

PG TRB
COMPUTER SCIENCE

Professor Academy

UNIT - IX

PHP AND

MYSQL

Copyright© 2025 by Professor Academy

All rights reserved. No part of this publication may be
reproduced, distributed, or transmitted in any form or by
any means, including photocopying, recording, or other
electronic or mechanical methods.

Title : 	��� PG TRB COMPUTER SCIENCE
	 Unit IX - PHP AND MYSQL

Edition: 1" edition
Year : 2025

Published by:

Professor Academy
No:14, West Avenue, Taylor Estate,
Kodambakkam, Chennai-600 024.
7070701005, 7070701009
professoracademy.com

Feel free to mail us at feedback@professoracademy.comfeedback@professoracademy.com

INDEX

PHP

1.	 Introduction to PHP��1

2.	 Variables and Constants in PHP��10

3.	 Operators and Expressions��19

4.	 Control Structures in PHP���27

5.	 Functions in PHP���36

6.	 String Handling in PHP���42

7.	 Understanding Arrays in PHP���47

8.	 File Handling in PHP���55

9.	 File Uploading and Downloading���62

10.	Directory Management��65

MySQL

1.	 Introduction to MySQL��69

2.	 Creating a Table with Constraints���94

3.	 Data Manipulation in MySQL��99

4.	 Advanced MySQL Operations and PHP Integration��107

SYLLABUS

Basics of PHP:
	� Evaluation of PHP, Basic Syntax, Defining variable and constant, PHP Data type,

Operator and Expression, Making Decisions, Doing Repetitive task with looping,
Mixing Decisions and looping with HTML.

Functions:
	 Defining a function, Call by value and Call by reference, Recursive function.

String Handling:
	� Creating and accessing, String Searching and Replacing String, Formatting String,

String Related Library functions.

Array:
	� Anatomy of an Array, Index based and Associative array, Accessing array, Element

Looping with Index based array, Looping with associative array.

Working with file and Directories:
	� Understanding file and directory, Opening and closing a file, Copying, renaming

and deleting a file, working with directories, Creating and deleting folder, File
uploading and downloading.

MySQL:
	� MySQL database connection, Creating a table with key constraints, dropping

a table, adding, retrieving, updating data, deleting data, Performing additional
queries (Joins and subqueries), Connecting to MySQL, Accessing MySQL using
PHP, Querying MySQL database with PHP.

+91 707070 1005
+91 707070 1009

www.professoracademy.com

COMPUTER SCIENCE

Professor Academy

��������������������
�����������������

���������
���������
�������
���������
��

	�������
�
�������
����
�
�
������������
�

��
	������

���
�����������������

��������������
����������� ��­
������

�����

��
���
�����
�
�����
�����	��

Online Live
Classes

Study
Material

New Syllabus
2024

100+ Test
Series

SupportRecorded
Access

Professor Academy

www.professoracademy.com

PG TRB 2025

ONLINE COURSE

1

Introduction to PHP

Introduction
The term PHP is an acronym

for – Hypertext Preprocessor. PHP

is a server-side scripting language

designed specifically for web

development. It is an open-source

which means it is free to download

and use. It is very simple to learn

and use. The file extension of PHP is

“.php”.

What is PHP?
PHP is a server-side scripting

language created primarily for web

development but it is also used as a

general-purpose programming

language. Unlike client-side

languages like JavaScript, which are

executed on the user’s browser, PHP

scripts run on the server. The results

are then sent to the client’s web

browser as plain HTML.

2

History of PHP
PHP was introduced by Rasmus

Lerdorf in 1994, the first version and

participated in the later versions. It is an

interpreted language and it does not require a

compiler. The language quickly evolved and was

given the name “PHP,” which initially named was

“Personal Home Page.”

• PHP 3 (1998): The first version considered

suitable for widespread use.

• PHP 4 (2000): Improved performance and

the introduction of the Zend Engine.

• PHP 5 (2004): Added object-oriented

programming features.

• PHP 7 (2015): Significant performance

improvements and reduced memory usage.

• PHP 8 (2020): Introduction of Just-In-Time

(JIT) compilation, further enhancing

performance.

PHP Features

Performance:

PHP script is executed much faster than

those scripts which are written in other

languages such as JSP and ASP. PHP uses its

own memory, so the server workload and

loading time is automatically reduced, which

results in faster processing speed and better

performance.

Open Source:

PHP source code and software are freely

available on the web. You can develop all the

versions of PHP according to your requirement

without paying any cost. All its components are

free to download and use.

Familiarity with syntax:

PHP has easily understandable syntax.

Programmers are comfortable coding with it.

Embedded:

PHP code can be easily embedded within

HTML tags and script.

Platform Independent:

PHP is available for WINDOWS, MAC,

LINUX & UNIX operating system. A PHP

application developed in one OS can be easily

executed in other OS also.

3

Database Support:

PHP supports all the leading databases

such as MySQL, SQLite, ODBC, etc.

Error Reporting -

PHP has predefined error reporting

constants to generate an error notice or warning at

runtime. E.g., E_ERROR, E_WARNING,

E_STRICT, E_PARSE.

Loosely Typed Language:

PHP allows us to use a variable without

declaring its datatype. It will be taken

automatically at the time of execution based on the

type of data it contains on its value.

Web servers Support:

PHP is compatible with almost all local

servers used today like Apache, Netscape,

Microsoft IIS, etc.

Security:

PHP is a secure language to develop the

website. It consists of multiple layers of security to

prevent threads and malicious attacks.

Control:

Different programming languages require

long script or code, whereas PHP can do the same

work in a few lines of code. It has maximum control

over the websites like you can make changes easily

whenever you want.

A Helpful PHP Community:

It has a large community of developers who

regularly updates documentation, tutorials, online

help, and FAQs. Learning PHP from the

communities is one of the significant benefits.

How PHP Works?
PHP scripts are executed on the server. Here’s a
typical flow of how PHP works:
• A user requests a PHP page via their web

browser.
• The server processes the PHP code. The PHP

interpreter parses the script, executes the code,
and generates HTML output.

• The server sends the generated HTML back to
the client’s browser, which renders the web
page.

This server-side processing allows for dynamic
content generation and ensures that sensitive code
is not exposed to the client.

Syntax
<?php
 // PHP code goes here
?>

Basic Example of PHP

HTML

<!DOCTYPE html>

<html>

 <head>

 <title>PHP Hello World</title>

</head>

<body>

 <?php echo "Hello, World! This is PHP code";?>

</body>

</html>

Output:

Hello, World! This is PHP code

PHP Installation and Configuration

To get started with PHP, you need to set up a local

environment. Here’s a simple guide:

• Install a Web Server: Apache or Nginx are

popular choices.

• Install PHP: Download and install the latest

version of PHP from the official PHP website.

• Install a Database: MySQL or MariaDB are

commonly used with PHP.

• Configure PHP: Update the php.ini file to

configure PHP settings as needed.

For beginners, a complete package like XAMPP

(Windows) or MAMP (macOS) is recommended,

as it comes bundled with Apache, PHP, and

MySQL.

Interesting fact: PHP Was Created by a

Programmer Who Didn’t Know What He Was

Doing

• Rasmus Lerdorf, the creator of PHP, originally wrote

it in 1993 as a simple set of scripts to track visitors to

his online resume. The first version was called

"Personal Home Page Tools", which later evolved

into PHP/FI (Personal Home Page/Form

Interpreter).

• He didn’t intend for it to become a full-fledged

programming language. In fact, PHP was initially just

a collection of CGI (Common Gateway Interface)

binaries for tracking web visitors.

4

Applications of PHP

PHP is versatile and can be used in a variety of web

development scenarios, including:

• Content Management Systems

(CMS): Many popular CMSs like WordPress,

Joomla, and Drupal are built with PHP.

• E-commerce Platforms: PHP is commonly

used to develop e-commerce websites due to

its database integration capabilities.

• GUI-based Apps: PHP is also used to create

graphical user interface-based applications for

desktops. Several tools, such as PHP-GTK 2

and ZZEE PHP GUI, are used for scripting

client-side GUI-based apps.

• Data Representation: The developers often

use PHP for data representation purposes.

Charts, scatter-dot plots, graphs, etc.,

• Image Processing & Graphics

Design: popularly used in the processing of

graphics and images. Certain image processing

libraries such as Imagine, ImageMagick, and

GD library can be integrated with PHP for

various purposes ranging from resizing and

rotating to cropping and thumbnail creation.

Why should we use PHP?
PHP can actually do anything related to

server-side scripting or more popularly known as

the backend of a website. For example, PHP can
receive data from forms, generate dynamic page
content, can work with databases, create sessions,
send and receive cookies, send emails, etc. There
are also many hash functions available in PHP to
encrypt users’ data which makes PHP secure and
reliable to be used as a server-side scripting
language. So these are some of PHP’s abilities that
make it suitable to be used as a server-side
scripting language.

Even if the above abilities do not convince

you of PHP, there are some more features of PHP.

PHP can run on all major operating systems like

Windows, Linux, Unix, Mac OS X, etc. Almost all

of the major servers available today like Apache

supports PHP. PHP allows using a wide range of

databases. And the most important factor is that it

is free to use and download and anyone can

download PHP from its

Advantages of PHP

• Open Source: PHP is an open-source

language, meaning it is freely available for
anyone to use and distribute. This openness has
fostered a large and active community of
developers who continuously contribute to its
growth, improvement, and feature
development.

• Easy to Learn: The syntax of PHP is quite
similar to C and other programming languages.
This makes PHP relatively easy to learn,
especially for developers who already have
some programming experience. Beginners find
it approachable due to its straightforward
syntax and extensive online resources.

Interesting fact: PHP Is Everywhere
• Over 75% of websites on the internet use

PHP in some capacity. This includes some

of the most popular websites in the world

like Facebook, WordPress, Wikipedia, and

Tumblr.

• It’s used for creating dynamic web pages,

handling forms, managing databases, and

more

5

• Web Integration: PHP is designed specifically

for web development and is embedded within

HTML. It seamlessly integrates with various

web technologies, facilitating the creation of

dynamic and interactive web pages.

• Database Support: PHP has excellent

support for various databases, including

MySQL, PostgreSQL, SQLite, and more. This

makes it easy to connect and interact with

databases, a crucial aspect of many web

applications.

• Cross-Platform Compatibility: PHP is

platform-independent and runs on various

operating systems, including Windows, Linux,

macOS, and others. This ensures compatibility

across different environments.

• Large Community and

Documentation: PHP has a vast and active

community of developers. The abundance of

online resources, tutorials, and documentation

makes it easier for developers to find solutions

and seek help when needed.

• Frameworks and CMS: There are popular

PHP frameworks like Laravel, Symfony, and

CodeIgniter, which provide pre-built modules

and features, aiding in rapid development.

Additionally, PHP supports widely used

content management systems (CMS) like

WordPress and Joomla.

• Server-Side Scripting: PHP scripts are

executed on the server, reducing the load on

the client’s side. This server-side scripting

capability is crucial for generating dynamic

content and performing server-related tasks.

• Community Support: The PHP community

actively contributes to the language’s

development, ensuring regular updates,

security patches, and improvements.

Disadvantages of PHP

• Inconsistency: PHP has been criticized for

inconsistencies in function names and

parameter orders. This can lead to confusion

for developers, especially when working with a

mix of older and newer functions.

• Security Concerns: If not handled properly,

PHP code may be susceptible to security

vulnerabilities, such as SQL injection and cross-

site scripting (XSS). Developers need to be

cautious and follow best practices to secure

PHP applications.

• Performance: While PHP performs well for

many web applications, it may not be as fast as

some compiled languages like C or Java.

However, advancements and optimizations in

recent versions have improved performance.

• Lack of Modern Features: Compared to

newer languages, PHP may lack some modern

language features. However, recent versions of

PHP have introduced improvements and

features to address this concern.

• Scalability Challenges: PHP can face

challenges when it comes to scaling large and

complex applications. Developers may need to

adopt additional tools or frameworks to

address scalability issues.

Success is not for the ones who quit, but for those who persist."

6

• Not Suitable for Large-Scale

Applications: While PHP is suitable for small

to medium-sized projects, it might not be the

best choice for extremely large and complex

applications where more structured languages

might be preferred.

• Limited Object-Oriented Programming

(OOP) Support: Although PHP supports OOP,

its implementation has been criticized for not

being as robust as in some other languages.

However, recent versions have introduced

improvements to enhance OOP capabilities.

Evaluation of PHP

HP or Hypertext Preprocessor was developed

by an employed Danish programmer, Rasmus

Lerdorf out of Toronto in Canada in 1994 and

released to the public in 1995 with the name

Personal Home Page tools. It was then rewritten in

1996 by Zeev Suraski and Andi Gutman who

launched it as PHP3. In 2000, PHP4 was released

incorporated into a scripting engine followed by 3

more major-version and few subversions until the

latest version PHP7.0 was released in 2015. It

gained popularity over the years owing to it being

open source and allowing other programmers to

use the language on their own pages and today

controls over 80% of websites across the globe.

PHP has emerged as one of the highly popular

server-side scripting languages owing to its

flexibility, innovative features and it is the fastest

resource present for creating database-enabled

dynamic websites. PHP includes a well-organized

code that is easily embedded into HTML code and

all features and updates to the language are

available free of cost. In comparison to the other

languages, troubleshooting and debugging issues

is easier in PHP. Moreover, it supports major

operating systems like Windows, Linux, Unix, Mac

OS, etc and also supports enterprise and web

servers like Microsoft IIS, Netscape, Apache, etc.

These features of PHP made it increasingly the

choice for web developers when designing

complex but attractive websites during a short

span of time.

Better run-time performance and improved

extension API with web server abstraction layers

and the methodology of compile first and execute

later were some of the reasons which made PHP

the base for building CMS like WordPress in 2003.

Over time, with each update, improvements in

error handling, performance improvements almost

twice as the previous versions and several more

features led to a continuous increase in the

popularity of the language as the preferred web

development technology.

Basic Syntax of PHP

PHP, a powerful server-side scripting

language used in web development. It’s simplicity

and ease of use makes it an ideal choice for

beginners and experienced developers. This

article provides an overview of PHP syntax. PHP

scripts can be written anywhere in the document

within PHP tags along with normal HTML.

PHP code is executed between PHP tags,

allowing the integration of PHP code within

HTML. The most common PHP tag is <?php …

?>, which is used to enclose PHP code. The <?php

….?>is called Escaping to PHP.

The script starts with <?php and ends

with ?>. These tags are also called ‘Canonical PHP

tags’. Everything outside of a pair of opening and

closing tags is ignored by the PHP parser. The open

and closing tags are called delimiters. Every PHP

command ends with a semi-colon (;).

Basic Example of PHP

Output

Hello, world!

https://www.braincandy.in/web-development-company-navi-mumbai/
https://www.braincandy.in/web-application-development/
https://www.braincandy.in/web-application-development/

7

Embedding PHP in HTML

PHP code can be embedded within HTML

using the standard PHP tags. In this example, the

<?php echo “Hello, PHP!”; ?> statement

dynamically inserts a heading into the HTML

document.

HTML

SGML or Short HTML Tags
These are the shortest option to initialize a PHP

code. The script starts with <? and ends with ?>.

This will only work by setting

the short_open_tag setting in the php.ini file to ‘on’.

Example:

<?php

// Here echo command will only work if

// setting is done as said before

echo "Hello, world!";

?>

Output

Hello, world!

Case Sensitivity
PHP is partially case-sensitive-
• Keywords (like if, else, while, echo) are not

case-sensitive.
• Variable names are case-sensitive.
Example:
<?php
$Var = "Hello Teacher";
// Outputs: Hello Teacher

echo $Var;
// Error: Undefined variable $var
echo $var;
?>

Comments in PHP
Comments are used to make code more

readable by explaining the purpose of specific

code blocks. Comments are ignored by the PHP

interpreter.

Single Line Comment

As the name suggests, these are single line
or short relevant explanations that one can add to
their code. To add this, we need to begin the line
with (//) or (#).
<?php
// This is a single line comment
// These cannot be extended to more lines
echo "Hello World!";
This is also a single line comment
?>

Output

Hello World!

Multi-Line or Multiple Line Comment
It is used to accommodate multiple lines

with a single tag and can be extended to many lines

as required by the user. To add this, we need to

begin and end the line with (/*…*/)

Output

Hello World!

Did You Know PHP is Case-

insensitive for Functions?
• PHP function names are case-insensitive.

Whether you write echo, ECHO, or Echo,

the result will be the same. However, it's
best practice to follow standard

conventions and use lowercase for
function names.

Interesting fact: PHP is Not Just for

Websites
While PHP is mostly associated with web

development, it can be used for other tasks as
well. PHP has been used for creating

command-line scripts, running background

tasks, or even building desktop applications

(though it's not commonly used for that

purpose).

•

8

Variables and Data Types
Variables are used to store data that can be

manipulated within PHP. They are declared using

the $ symbol followed by the variable name.

Declaring Variables

Variables are created by assigning a value to them

using the assignment operator (=).

Data Types

PHP supports several data types, including:

• String: A sequence of characters.

• Integer: Whole numbers.

• Float (Double): Numbers with a decimal

point.

• Boolean: Represents true or false.

• Array: A collection of values.

• Object: An instance of a class.

• NULL: A special type representing a variable

with no value.

• Resource: A special type that holds a reference

to external resources (like database

connections).

Blocks in PHP

In PHP, multiple statements can be executed

simultaneously (under a single condition or loop)

by using curly-braces ({}). This forms a block of

statements that gets executed simultaneously.

<?php

$var = 50;

if ($var > 0) {

 echo ("Positive as \n");

 echo ("greater than 0");

}

?>

Output

Positive as

greater than 0

9

Practice Questions
1. What does PHP stand for?

A) Personal Home Page

B) PHP Hypertext Preprocessor

C) Private Home Page

D) Public Hypertext Processor

2. Which of the following is a correct way to

start a PHP code block?

A) <php> B) <?php

C) <script> D) <html>

3. Which function is used to output data to the

browser in PHP?

A) echo() B) print()

C) output() D) Both A) and B)

4. What is the default file extension for PHP

files?

A) .html B) php C) txt D) xml

5. Which of the following is NOT a valid variable

name in PHP?

A) $myVariable B) $_myVar

C) $1stVariable D) $my_var

6. What is the correct way to create a constant

in PHP?

A) define("CONSTANT_NAME", "value");

B) const CONSTANT_NAME = "value";

C) Both A) and B)

D) None of the above

7. Which of the following statements is true

about PHP?

A) PHP is a server-side scripting language.

B) PHP can be embedded in HTML.

C) PHP is platform-independent.

D) All of the above.

8. What is the purpose of the PHP require()

function?

A) To include a file only once.

B) To include a file and terminate the script if it fails.

C) To include a file and continue execution if it fails.

D) To create a new PHP variable.

9. Which PHP super global is used to collect

form data after submitting an HTML form?

A) $_POST B) $_GET

C) $_REQUEST D) All of the above

10. In PHP, how do you create an associative

array?

A) $arr = array("key1" => "value1", "key2" =>

"value2");

B) $arr = ["key1" => "value1", "key2" => "value2"];

C) Both A) and B)

D) None of the above

11. What is one of the primary advantages of

using PHP for web development?

A) It requires extensive configuration

B) It is highly compatible with various databases

C) It has limited community support

D) It only runs on Windows servers

12. Which of the following is a disadvantage of

PHP?

A) It is completely free to use

B) It can lead to security vulnerabilities if not coded

properly

C) It supports only object-oriented programming

D) It has a very steep learning curve

13. In which scenario is PHP commonly applied?

A) Desktop application development

B) Creating static websites without interactivity

C) Server-side scripting for dynamic web applications

D) Developing mobile applications exclusively

14. One of the reasons PHP is popular among

developers is its:

A) Lack of frameworks

B) Rich set of built-in functions

C) Requirement for high-end servers

D) Incompatibility with HTML

15. What is a typical application of PHP in a

content management system (CMS)?

A) Handling client-side animations

B) Managing database interactions for content storage

C) Writing operating system-level scripts

D) Developing hardware drivers

Ans : 1-b,2-b,3-d,4-b,5-c,6-c,7-d,8-b,9-d,10-c,11-b,12-b,13-c,14-b,15-b

VIRTUAL CLASS FEATURES

������������	����������������

������	��	������������������
��
���������������

�������
�������

 ���­��������

�	�����������	��������������������
�
�����������	��������������������
�

������������������
���������������
�������
�

���������������������������

�

���­���
����
���
�����
���������
��������
����
��

���
�����
���������
��������������
���������

www.professoracademy.com

COURSE BENEFITS

APP FEATURES

�������	�������

��������������������������������������

�������

������������������������������������
�
��

�

�����	����������
�������	����
���������������
�

�

�����	����������
�������	��������
	���������	��

�	�����������������������������������

��
�

��������������
������

����������������

������������������������

���
�������
�������
��������
���������
���������������
������������
������������������������������

Explore

Learn

Succeed

Download

www.professoracademy.com

10

2. Variables and Constants in PHP

Defining Variables

A PHP variable is a name given to a

memory address that holds data. The basic

method to declare a PHP variable is by using a $

sign which is followed by the variable name. A

variable helps the PHP code to store information in

the middle of the program. If we use a variable

before it is assigned then it already has a default

value stored in it. Some of the data types that we

can use to construct a variable are integers,

doubles, and boolean.

Example:

<?php

$txt = "Hello";

$x = 5;

$y = 10.5;

echo $txt;

echo "
";

echo $x;

echo "
";

echo $y;

?>

Output

Hello

5

10.5

Rules for variable names:

• Variable names in PHP start with a

dollar ($) sign followed by the variable name.

• Variable name can contain alphanumeric

characters and underscore (_).

• Variable names must start with a letter or an

underscore (_). (For eg: $abc, $x1, $_g, $abc_1

etc.)

• Variable names cannot start with a number.

• Variable names are case-sensitive. (for eg: $x

and $X are treated as two different variables.)

• In PHP we don’t use any command to declare

variables.

• A variable is created as soon as you assign a

value to it.

• A variable takes a datatype according to the

value assigned to it.

• Since we don’t have to specify datatypes for

PHP variables, PHP is called as loosely typed

language.

Scope of variables:

Variables can be declared anywhere in the

program.

Scope of a variable is a part of the program

where the variable is accessible.

PHP has three different variable scopes:

• Local

• Global

• Static

Local scope:

A variable declared within a function has a

local scope and can be accessed within a function

only.A function is a small program performing a

particular task which is called when required.

Global scope:

A variable declared outside a function has a

global scope and can be accessed outside the

function only.Actually, global variables can be

accessed anywhere using the global keyword.

Static scope:
A variable declared with static keyword is said

to have static scope within the function.

Normally when variables are executed, they lose

their values or memory.

But when a variable is declared as static, it

doesn’t lose its value. It remains static within

multiple function calls.

(Content Developed by Pro.fessor

Ac.ademy)

Exam Points PHP Variables Don’t Need Type

Declarations:

• PHP is a loosely typed language, which

means you can change a variable’s type at

any point. For example, a variable that

initially holds an integer can later hold a

string or an array.

php

Copy code

$value = 100; // Integer

$value = "Hello"; // Now a String

11

Variable declaration:
Variable is declared as follows:

$variable_name=value;

Example of variable declaration is given below:

$x=5;

$x is a variable and 5 is a value assigned to $x

variable using assignment operator (=). The

assignment operator assigns the right hand side

value to the left hand side variable in an

expression.

The variable name can be just alphabets or they

can be some descriptive names

like $school_name, $names, $games etc.

In PHP we can print a value of variable using an

echo statement as follows:

<?php

$x=10;

echo $x;

?>

Output

10

Demonstration of Global Scope of variables:

Write the following code in index.php file

and test it by putting it in the newly created

folder var_constant in htdocs folder of xampp

folder.

The code is as follows:

<?php

$x = 10; // Global variable

function myfun()

{

 global $x; // Declare $x as global

 $y = 20; // Local variable

 echo "Value of var x inside myfun = " . $x;

 echo "
";

 echo "Value of var y inside myfun = " . $y;

 echo "
";

}

myfun();

echo "Value of var x outside myfun = " . $x;

echo "
";

?>

Here, we have declared a global variable and a

local variable in the function myfun().

• Both the value of $x and $y are printed in the

function myfun() as well as outside the function.

• The function myfun() needs to be called for

execution as done in the statement myfun().

• You will get the following error shown in the

figure below:

• This error occurs because the global variable

$x is not accessible in the function myfun().

• And local variable $y of function myfun() is not

accessible outside the function.

• Now just comment the following statements

given below in the code:

• echo "Value of var x inside myfun = ".$x;

• echo "Value of var y outside myfun = ".$y;

o We will get the following output:

• But meaning of global is accessible

everywhere, and here we see that the global

variable $x is not accessible inside the function

myfun().

• We can make it accessible by using keyword

global before the variable $x inside function

myfun().

It is shown below:

<?php

$x=10; //global variable

//echo $x;

function myfun()

{

 global $x; //accessing global variable inside

function

 $y=20; //local variable

 echo "Value of var x inside myfun = ".$x;

 echo "
";

 echo "Value of var y inside myfun = ".$y;

 echo "
";

}

myfun();

echo "Value of var x outside myfun = ".$x;

12

echo "
";

//echo "Value of var y outside myfun = ".$y;

?>

• In the above code we have a statement global

$x; written inside the function myfun(). This

allows access to global variable inside the

function.

• Now let us see the output of the above code:

• The statement Value of var x inside myfun =

10 proves that now the value of $x is accessible

in function myfun().

• The statement

• echo "Value of var y outside myfun = ".$y;

• is commented in the program because it will

give error since the local variables are not

accessible outside the function.

• You might have noticed a period (.) in the echo

statement. For example let us see the following

statement:

• echo "Value of var y outside myfun = ".$y;

• Here we have a period (.) in between a

string “Value of var y outside myfun =

“ and variable $y. This period is used for

concatenating/joining two values.

• Demonstration of Static Scope of variables:

• We discussed that static scope means the value

of a variable is retained within multiple function

calls.

• Let us try to demonstrate it.

• Write the following code in index.php file by

commenting all the previous code:

<?php

function static_eg()

{

 $x=0;

 static $y=0;

echo "non-static var x = $x static var

y = $y
";

 $x++;

 $y++;

}

static_eg();

static_eg();

static_eg();

static_eg();

?>

• Here, we see that we have a

function static_eg() that contains two variables

viz. $x and $y.

• $x is a simple local variable and $y is a local

variable but also a static variable.

• Both are initialized to zero.

• After printing the values of both the variables

using echo statement, they are incremented

each time.

• The function static_eg() is called 4 times.

• The output of the above code is given below:

• Here, we can see that the value of variable $x is

zero (0) every time and the value of variable $y

is incremented by 1 each time.

• This is because a simple variable loses its

value once it comes out of the block it is defined

in, but a static variable retains its value each time.

Defining Constants

PHP Constants are the identifiers that
remain the same. Usually, it does not change during
the execution of the script. They are case-sensitive.
By default, constant identifiers are always
uppercase. Usually, a Constant name starts with an
underscore or a letter which is followed by a
number of letters and numbers. They are no need
to write a constant with the $ sign.
The constant() function is used to return the value
of a constant.
Example

Interesting Facts: You Can Use unset() to

Destroy Variables:
• PHP allows you to destroy variables with

the unset() function. After calling unset(),
the variable is no longer available.

php

Copy code

$x = 10;

unset($x); // $x is now destroyed

13

<?php
define("Hello", "Welcome ");
echo Hello;
?>
Output
Welcome

Difference between PHP Constants
and PHP Variables

PHP Constants PHP Variables

In PHP constants there is

no need to use $ sign.

In PHP Variables the $

sign is been used.

The data type of PHP

constant cannot be

changed during the

execution of the script.

The data type of the

PHP variable can be

changed during the

execution of the script.

A PHP constant once

defined cannot be

redefined.

A PHP variable can be

undefined as well as can

be redefined.

We can not define a

constant using any simple

assignment operator

rather it can only be

defined using define().

We can define a variable

using a simple

assignment

operation(=).

Usually, constants are

written in numbers.

On the other hand,

variables are written in

letters and symbols.

PHP constants are

automatically global

across the entire script.

PHP variables are not

automatically global in

the entire script.

PHP constant is

comparatively slower

than PHP variable

A PHP variable is

comparatively faster

than the PHP constant

PHP Data Types

Variables in PHP are capable of storing
various types of data, each categorized into eight
distinct data types. These include basic,
compound, and special data types, each serving a
specific purpose. You have basic data types like
Boolean, Integer, Double, and String.

Additionally, PHP supports user-defined or
compound data types, specifically Arrays and
Objects. There are also special data types in PHP,
namely NULL and resource.

This figure gives us a clear picture of PHP Data

types.

Different Types of PHP Data Types

PHP has the following data types -

Under basic data types, we have -

• Integers

• Floats (Floating-Point Numbers)

• Strings

• Booleans

• PHP Compound Data Types

• Under compound data types, we have-

• Arrays

• Objects

• PHP Special Data Types

• Under special data types, we have-

• Resource

• NULL

PHP Integers

In PHP, integers are used to represent

whole numbers, including both positive and

negative values, without any fractional or decimal

part. They can be expressed in three bases:

decimal (base 10), octal (base 8), or hexadecimal

(base 16), with the default base being decimal.

• Decimal Integers:

• $decimal_integer = 42;

• Octal Integers:

$octal_integer = 052; // Leading 0 denotes

octal

• Hexadecimal Integers:

$hexadecimal_integer = 0x2A; // Leading 0x

denotes hexadecimal

Exam Points Constants Can’t Be Changed Once

Defined:

• Once a constant is defined using define(), it

cannot be changed or redefined during script

execution. Unlike variables, constants are

immutable.

php

Copy code

define("SITE_NAME", "My Website");

https://www.includehelp.com/php/php-variables.aspx
https://www.includehelp.com/php/php-introduction.aspx

14

Example

This example demonstrates the PHP integer type.

<?php

$decimal_integer = 42;

$octal_integer = 052;

$hexadecimal_integer = 0x2a;

echo "The value of decimal_integer is:

$decimal_integer
";

echo "The value of octal_integer is:

$octal_integer
";

echo "The value of hexadecimal_integer is:

$hexadecimal_integer
";

// Printing values and types

var_dump($decimal_integer);

echo "
";

var_dump($octal_integer);

echo "
";

var_dump($hexadecimal_integer);

?>

Output:

The value of decimal_integer is: 42

The value of octal_integer is: 42

The value of Hexa decimal_integer is: 42

int(42)

int(42)

int(42)

PHP Floats
In PHP, floats are versatile data types that

can represent numbers with fractional or decimal

parts, including both positive and negative values.

They can also express numbers in exponential

form.

Decimal and Exponential Floats:

$decimal_float = 3.14;

$scientific_notation = 2.3e4; // 2.3 * 10^4

Example

This example demonstrates the PHP float data

type.

<?php

$decimal_float = 3.14;

$scientific_notation = 2.3e4;

echo "The first value is: $decimal_float
";

echo "The second value is:

$scientific_notation.
";

// Printing value and type

var_dump($decimal_float);

echo "
";

var_dump($scientific_notation);

?>

Output:

The first value is: 3.14

The second value is: 23000.

float(3.14)

float(23000)

PHP Strings

Strings store sequences of characters, including

letters and numbers. Use double quotes for

flexibility and single quotes for literal values.

• Double-Quoted String:

$double_quoted_string = "Hello, World!";

• Single-Quoted String:

$single_quoted_string = 'PHP allows single-

quoted strings.';

Note: Understanding the difference between

single and double quotes is important, especially

when dealing with variable values within strings.

Example

This example demonstrates the PHP string data

type.

<?php

$str1 = 'Hello, world!';

$str2 = "Welcome at IncludeHelp";

echo "The first string is: $str1.
";

echo "The second string is: $str2.
";

// Printing value, size, and type

var_dump($str1);

echo "
";

var_dump($str2);

?>

Output:

The first string is: Hello, world!.

The second string is: Welcome at IncludeHelp.

string(13) "Hello, world!"

string(22) "Welcome at IncludeHelp"

PHP Booleans
Booleans in PHP are fundamental for

conditional testing, holding either TRUE

(equivalent to 1) or FALSE (equivalent to 0).

15

Successful events typically return TRUE, while

unsuccessful events return FALSE. Additionally:

• NULL Values:

$null_value = NULL; // Treated as FALSE in

boolean

• Zero Values:

$zero_value = 0; // Also considered FALSE in

boolean

• Empty Strings:

$empty_string = ''; // Treated as FALSE in

Boolean

Example

This example demonstrates the PHP Boolean data

type.

<?php

$x = true;

if ($x) {

 echo "It's true.";

} else {

 echo "It's false.";

}

echo "
";

$x = null;

if ($x) {

 echo "It's true.";

} else {

 echo "It's false.";

}

echo "
";

$x = "Hello";

if ($x) {

 echo "It's true.";

} else {

 echo "It's false.";

}

?>

Output:

It's true.

It's false.

It's true.

PHP Arrays
Arrays, a compound data type in PHP,

efficiently store multiple values of the same data

type.

They are like containers for holding multiple pieces

of information. Here's an example with integers:

$integer_array = [1, 2, 3, 4, 5];

Example
This example demonstrates the PHP array data

type.

<?php

$numbers = [1, 2, 3, 4, 5];

echo "First element: $numbers[0]
";

echo "Second element: $numbers[1]
";

echo "Third element: $numbers[2]
";

echo "Fourth element: $numbers[3]
";

echo "Fifth element: $numbers[4]

";

// Printing array's value and type

var_dump($numbers);

?>

Output:

First element: 1

Second element: 2

Third element: 3

Fourth element: 4

Fifth element: 5

array(5) { [0]=> int(1) [1]=> int(2) [2]=> int(3)

[3]=> int(4) [4]=> int(5) }

PHP Objects
Objects in PHP are instances of user-

defined classes. They encapsulate both data and

functions specific to the class. Objects inherit

properties and behaviors from the class, each

instance having unique property values.

Example

<?php

class Car

{

 public $brand;

 public $model;

}

// Creating an instance of the Car class

$my_car = new Car();

$my_car->brand = "Toyota";

$my_car->model = "Camry";

echo $my_car->brand . "
";

echo $my_car->model;

?>

16

Output:

Toyota

Camry

In this example, we define a Car class with public

properties $brand and $model. We then create an

instance of the Car class named $my_car and set

its properties to specific values. After creating

the $my_car object, we demonstrate how to access

its properties ($brand and $model) using the arrow

(->) notation.

PHP NULL

NULL in PHP is a special variable type that

can only hold one value: NULL. It is case-sensitive,

typically written in capital letters. When a variable

is created without a value, or explicitly set to

NULL, it automatically takes on this special value.

Let's understand NULL by this example.

Example

<?php

$variable = null;

echo "The variable is $variable
";

if (is_null($variable)) {

 echo "The variable is NULL";

}

?>

Output:

The variable is

The variable is NULL

In this example, we can see that the value

of $variable is "NULL". It can be seen in the output

that the first echo statement didn't display

the $variable value.

PHP Resources

Resources in PHP are used to store

references, often to external functions or resources,

such as database connections. They are not an

exact data type but serve as handles for specific

operations like file handling or database

connections.

Example

<?php

$integer_variable = 42;

$float_variable = 3.14;

$string_variable = "Hello, PHP!";

$boolean_variable = true;

$array_variable = [1, 2, 3];

$object_variable = new stdClass();

$null_variable = null;

echo "Integer: $integer_variable
";

echo "Float: $float_variable
";

echo "String: $string_variable
";

echo "Boolean: " . ($boolean_variable ? "true" :

"false") . "
";

echo "Array: " . print_r($array_variable, true) .

"
";

echo "Object: " . print_r($object_variable, true) .

"
";

echo "NULL: " . var_export($null_variable, true) .

"
";

?>

Output:

Integer: 42

Float: 3.14

String: Hello, PHP!

Boolean: true

Array: Array ([0] => 1 [1] => 2 [2] => 3)

Object: stdClass Object ()

NULL: NULL

This example demonstrates the use of

various PHP data types, including integers, floats,

strings, booleans, arrays, objects and NULL.

Important Points on Variables and

Constants in PHP

Variables in PHP

Dynamic Typing:

• PHP does not require explicit type declaration

for variables. The type is determined by the

value assigned.

Naming Rules:

• Variables must start with a dollar sign ($),

followed by a letter or an underscore. They can

contain letters, numbers, and underscores.

Global Scope:

• Variables declared outside of functions have

global scope. Inside functions, global variables

https://www.includehelp.com/php/php-echo-and-print-statements.aspx

17

must be accessed using the global keyword or

$GLOBALS.

Super global:

• PHP has built-in global arrays like $_GET,

$_POST, $_SESSION, and others that are

accessible across the script.

Variable Variables:

• PHP allows the use of variable variables, where

the name of a variable is stored in another

variable.

References:

• Variables can be passed by reference using the

& symbol, allowing functions to modify the

original value.

Array Variables:

• PHP supports both indexed and associative

arrays as variables to store multiple values.

Unset Variables:

• The unset() function is used to destroy a

variable, making it unavailable in the current

scope.

Default Values:

• You can use the ternary operator to set default

values for variables when they are not defined.

• Constants in PHP

Definition:

• Constants are defined using the define()

function or the const keyword in classes. They

cannot be changed after being set.

Global Scope:

• Constants are automatically global and can be

accessed anywhere in the PHP script.

Case Sensitivity:

• By default, constants are case-insensitive, but

this can be controlled by passing a third

argument in the define() function.

Magic Constants:

• PHP has built-in magic constants like

__LINE__, __FILE__, __DIR__, etc., which

provide contextual information about the

script.

Constant Arrays:

• PHP allows defining constants as arrays (since

PHP 5.6), enabling grouping of related

constants.

Built-in Constants:

• PHP provides many built-in constants (e.g.,

PHP_VERSION, E_ALL, PHP_OS) that give

information about the PHP environment.

Class Constants:

• Constants can be defined within classes using

the const keyword, and can be accessed via

ClassName::CONSTANT_NAME.

Difference from Variables:

• Constants cannot be modified once defined,

unlike variables that can change values. They

are often used for values that should remain

unchanged throughout the script.

18

Practice Questions
1. What symbol is used to denote a variable in
PHP?
A) % B) @ C) $ D) &

2.Which of the following is a valid way to declare a
variable in PHP?
A) var name = "John"; B) $name = "John";
C) let name = "John"; D) define name = "John";

3. What will be the output of the following code:
echo "Hello, $name"; if $name is set to "Alice"?
A) Hello, name B) Hello, Alice
C) Hello, $name D) Hello, "Alice"

4. Which of the following types can a PHP
variable hold?
A) Only integers
B) Only strings
C) Multiple data types, including arrays and objects
D) Only booleans

5. What is the scope of a variable declared
outside a function in PHP?
A) Local B) Global
C) Static D) Private

6. What is the correct way to define a constant in
PHP?
A) const NAME = "Value";
B) define("NAME", "Value");
C) constant NAME = "Value";
D) variable NAME = "Value";

7. Which of the following statements about
constants in PHP is true?
A) Constants can change their value after being
defined.
B) Constants do not require a dollar sign ($).
C) Constants can only hold integer values.
D) Constants are case-insensitive by default.

8. What will happen if you try to redefine a
constant in PHP?
A) It will change the value of the constant.
B) It will throw a fatal error.
C) It will ignore the new value.
D) It will redefine the constant with a warning.

9. What is the output of the following code?
define("SITE_NAME", "OpenAI");
echo SITE_NAME;
A) SITE_NAME B) OpenAI
C) "OpenAI" D) Error

10. Which function is used to check if a constant
is defined in PHP?
A) is_constant() B) check_constant()
C) defined() D) constant_exists()

11. Which of the following is NOT a scalar data
type in PHP?
A) Integer B) Float
C) Array D) String

12. What is the output of the following code?
$var = 10;
echo gettype($var);
A) Integer B) Float C) String D) Array

13. Which PHP data type is used to store
multiple values in a single variable?
A) String B) Float
C) Array D) Boolean

14. How does PHP treat a variable that has not
been initialized?
A) It automatically assigns it a value of 0.
B) It assigns it a NULL value.
C) It throws an error.
D) It assigns it a random value.

15. What will be the output of the following
code?
$var = "5";
$result = $var + 2;
echo $result;
A) 5 B) 7 C) 52 D) Error

16. Which of the following is an example of an
associative array in PHP?
A) $colors = array("red", "green", "blue");
B) $ages = array("Alice" => 30, "Bob" => 25);
C) $numbers = array(1, 2, 3);
D) $data = array(10, "text", true);

17. What is the purpose of the isset() function in
PHP?
A) To check if a variable is defined and is not NULL.
B) To check if a variable is an array.
C) To retrieve the type of a variable.
D) To count the number of elements in an array.

18. Which of the following data types can
represent both true and false values in PHP?
A) Integer B) String
C) Boolean D) Float

19. What will be the result of the following code?
$var = "Hello";
$var .= " World!";
echo $var;
A) Hello B) Hello World!
C) HelloWorld! D) Error

20. Which PHP function can be used to convert a
string to an integer?
A) to_integer() B) intval()
C) str_to_int() D) cast_int()

Ans : 1-c,2-b,3-b,4-c,5-b,6-b,7-b,8-b,9-b,10-c,11-c,12-a,13-c,14-b,15-b,16-b,17-a,18-c,19-b,20-b

TEST SERIES

�����
������
�������
���� ��
����
��������������

��������

�����������
�������
������
�����

���������
������
�����������
��
�
���������	�
��
��������������
�������������

Download & Explore!

���

�����������������������

�������
���

­��������������������
��
�����������������������������

www.professoracademy.com

STUDY MATERIALS

������������������������������������ ��­
������������
������
���

���������
������
�����������
��
�
���������	�
�
��������������
�������������

��������
���������		���������������������������

���������������������		�

�����
�	��������������	������

Based on New Syllabus

www.professoracademy.com

��
������ ��­������� ��­������������������������
������
��

 Rs. 300 for courier charge payments is excluded

19

3. Operators and Expressions

PHP Operators

PHP operators are characters or sets of

characters used to manipulate or perform

operations on expressions and values. Operators

allow you to perform arithmetic operations, assign

values to variables, string concatenation, compare

deals, and perform boolean operations.

Operators are fundamental building blocks of

programming languages. They allow us to

manipulate and combine data to achieve desired

results. In PHP, there are many operators available

for various purposes. This tutorial will introduce

you to the most common PHP operators and

provide examples of their usage.

The following are the operators in PHP:

1. Arithmetic Operators

2. Assignment Operators

3. Comparison Operators

4. Increment/Decrement Operators

5. Logical Operators

6. String Operators

7. Array Operators

8. Conditional Assignment Operators

PHP Arithmetic Operators

Arithmetic operators are used to perform

basic mathematical operations like addition,

subtraction, multiplication, and division.

The following are the PHP arithmetic operators:

Operator Description Example

+ Addition $sum = 100 + 50; // $sum will be 150

- Subtraction $difference = 200 - 100; // $difference will be 100

* Multiplication $product = 5 * 3; // $product will be 15

/ Division $quotient = 100 / 2; // $quotient will be 50

% Modulus $remainder = 100 % 3; // $remainder will be 1

Example of PHP Arithmetic Operators

<?php

$sum = 100 + 50;

$difference = 200 - 100;

$product = 5 * 3;

$quotient = 100 / 2;

$remainder = 100 % 3;

// printing

echo $sum . "
";

echo $difference . "
";

echo $product . "
";

echo $quotient . "
";

echo $remainder . "
";

?>

The output of the above example is:

150

100

15

50

1

PHP Assignment Operators

Assignment operators are used to assign values to variables.

The following are the PHP assignment operators:

Operator Description Example

= Simple assignment $a = 65;

+= Adds and assigns $a += 5; means (a=a+5) // $a will be 70

-= Subtracts and assigns $a -= 5; means (a=a-5) // $a will be 65

*= Multiplies and assigns $a *= 2; means (a*2) // $a will be 130

/= Divides and assigns $a /= 2; // $a will be 10

20

Example of PHP Assignment Operators

<?php

$a = 65;

echo $a . "
";

$a += 5;

echo $a . "
";

$a -= 5;

echo $a . "
";

$a *= 2;

echo $a . "
";

$a /= 2;

echo $a . "
";

?>

The output of the above example is:

65

70

65

130

65

PHP Comparison Operators
Comparison operators are used to compare two values and return a Boolean (true/false) result.

The following are the PHP comparison operators:

Operator Description Example

== Equal to $a == 10; // true
!= Not equal to $a != 10; // false
< Less than $a < 10; // false
> Greater than $a > 10; // false
<= Less than or equal to $a <= 10; // true
>= Greater than or equal to $a >= 10; // true
<=> Spaceship operator (PHP 7+) $a <=> 10; // -1

Example of PHP Comparison Operators

<?php

$a = 10;

$result = $a == 10;

var_dump($result);

echo "
";

$result = $a != 10;

var_dump($result);

echo "
";

$result = $a < 10;

var_dump($result);

echo "
";

$result = $a > 10;

var_dump($result);

echo "
";

$result = $a <= 10;

var_dump($result);

echo "
";

$result = $a >= 10;

var_dump($result);

echo "
";

$result = $a <=> 10;

var_dump($result);

echo "
";

?>

The output of the above example is:

bool(true)

bool(false)

bool(false)

bool(false)

bool(true)

bool(true)

int(0)

PHP Increment/Decrement Operators
Increment and decrement operators are used to increase or decrease the value of a variable by 1.

The following are the PHP increment/decrement operators:

Operator Description Example
++ Pre-increment ++$a; // $a becomes 11
-- Pre-decrement --$a; // $a becomes 9
$a++ Post-increment $a++; // $a becomes 10 (after the statement execution)
$a-- Post-decrement $a--; // $a becomes 9 (after the statement execution)

21

Example of PHP

Increment/Decrement Operators

<?php

$a = 10;

++$a;

echo $a . "
";

--$a;

echo $a . "
";

$a++;

echo $a . "
";

$a--;

echo $a . "
";

?>

The output of the above example is:

11

10

11

10

PHP Logical Operators

Logical operators are used to combine two or more Boolean values and return a single Boolean result.

The following are the PHP logical operators:

Operator Description Example
&& Logical And $a > 10 && $b < 5; // true only if both $a > 10 and $b < 5 are true
|| Logical Or $a and $b; // Return true if both are true
! Logical Not !($a > 10); // true if $a is not greater than 10
and Logical And $a and $b; // Return true if both are true
or Logical Or $a or $b; // Return true if either is true
xor Logical Xor $a xor $b; // Return true if either is true, but not both

Example of PHP Logical Operators

<?php

$a = 10;

$b = 5;

$result = $a == 10 && $b == 5;

var_dump($result);

echo "
";

$result = $a == 10 || $b == 5;

var_dump($result);

echo "
";

$result = !($a == 10 && $b == 5);

var_dump($result);

echo "
";

$result = ($a == 10 and $b == 5);

var_dump($result);

echo "
";

$result = ($a == 10 or $b == 5);

var_dump($result);

echo "
";

$result = ($a == 10 xor $b == 5);

var_dump($result);

echo "
";

?>

The output of the above example is:

bool(true)

bool(true)

bool(false)

bool(true)

bool(true)

bool(false)

PHP String Operators
String operators are used to manipulate and combine strings.

The following are the PHP string operators:

Operator Description Example
. Concatenation $str1 = "Include" . " " . $str2;
.= String concatenation and assignment $str1 .= "Help";
== Equal to $str1 == "Include Help"; // true
!= Not equal to $str1 != "Include Help"; // false

https://www.includehelp.com/php/php-strings.aspx

22

Example of PHP String Operators
<?php
$str1 = "Include";
$str2 = "Help";
$result = $str1 . $str2;
echo $result . "
";
$result .= $str1;
echo $result . "
";
$result = $str1 == $str2;
var_dump($result);

echo "
";
$result = $str1 != $str2;
var_dump($result);
echo "
";
?>
The output of the above example is:
IncludeHelp
IncludeHelpInclude
bool(false)
bool(true)

PHP Array Operators

Array operators in PHP are used to compare two arrays, these are basically a kind of relation operators

for the array companions.

The following are the PHP array operators:

Operator Description Example
+ Array Union $a + $b; - Returns union or arrays.

== Array Equality $a == $b; - Returns if both have the same key and value pairs.
=== Array Identity $a == $b; - Returns if both have the same key and value pairs (their

order and type must be same).
!= Array Inequality $a != $b; - Returns true if both are not equal.
<> Array Inequality $a <> $b; - Returns true if both are not equal.
!== Array non-identity $a <> $b; - Returns true if $a is not identical to $b.

Example of PHP Array Operators
<?php
$x = ["fruit" => "Apple", "color" => "Red"];
$y = ["company" => "Honda", "model" => "City"];
print_r($x + $y);
echo "
";
var_dump($x == $y);
echo "
";
var_dump($x === $y);
echo "
";
var_dump($x != $y);
echo "
";
var_dump($x <> $y);

echo "
";
var_dump($x !== $y);
echo "
";
?>
The output of the above example is:
Array ([fruit] => Apple [color] => Red [company]
=> Honda [model] => City)
bool(false)
bool(false)
bool(true)
bool(true)
bool(true)

PHP Conditional Assignment Operators
Conditional assignment operators are used to define value based on the given conditions.

The following are the PHP conditional assignment operators:

Operator Description Example
?: Ternary Operator $result = expr1 ? expr2 : expr2;
?? Non-Coalescing Operator $result = expr1 ?? expr2;

Example of PHP Conditional
Assignment Operators
<?php
$a = 10;
$b = 5;
$result = $a > $b ? $a : $b;
echo "Largest value is " . $result . "
";
// Assigns "Hello, world!",

// if $welcome either not defined or null
$welcome = $welcome ?? "Hello, world!";
echo "Welcome message is " . $welcome . "
";
?>
The output of the above example is:
Largest value is 10
Welcome message is Hello, world!

23

PHP Operators Practice (More
Examples)

Exercise 1

Write a PHP script that calculates the area

of a rectangle given its length and width using

arithmetic operators.

<?php

// Calculate the area of a rectangle

$length = 5;

$width = 8;

$area = $length * $width;

echo "The area of the rectangle is: $area";

?>

The output of the above example is:

The area of the rectangle is: 40

Exercise 2

Create a PHP script that checks if a given

number is both divisible by 2 and 3. Use logical

operators to perform the check.

<?php

// Check if a number is divisible by 2 and 3

$number = 12;

if ($number % 2 == 0 && $number % 3 == 0) {

 echo "$number is divisible by both 2 and 3.";

} else {

 echo "$number is not divisible by both 2 and 3.";

}

?>

The output of the above example is:

12 is divisible by both 2 and 3.

Exercise 3

Write a PHP function that compares two

strings and returns "Equal" if they are the same,

"Greater" if the first string is lexicographically

greater, and "Smaller" if the second string is

lexicographically greater.

<?php

// Compare two strings

function compareStrings($str1, $str2)

{

 $result = strcmp($str1, $str2);

 if ($result == 0) {

 return "Equal";

 } elseif ($result > 0) {

 return "Greater";

 } else {

 return "Smaller";

 }

}

echo compareStrings("apple", "orange");

?>

The output of the above example is:

Smaller

Exercise 4

Implement a PHP script that determines

whether a given number is positive, negative, or

zero using the ternary operator.

<?php

// Determine if a number is positive, negative, or

zero

$number = -7;

$result = $number > 0 ? "Positive" : ($number < 0

? "Negative" : "Zero");

echo "The number is $result.";

?>

The output of the above example is:

The number is Negative.

Exercise 5

Develop a PHP program that uses the

multiplication and assignment operator (*=) to

calculate the square of a number.

<?php

// Calculate the square of a number using *=

$number = 4;

$number *= $number;

echo "The square of the number is: $number";

?>

The output of the above example is:

The square of the number is: 16

Exercise 6
Write a PHP function that takes two numbers

as parameters and uses the spaceship operator to

return:

• -1 if the first number is less than the second,

• 0 if they are equal,

• 1 if the first number is greater than the

second.

<?php

24

// Use spaceship operator to compare two

numbers

function compareNumbers($num1, $num2)

{

 return $num1 <=> $num2;

}

$result = compareNumbers(8, 5);

echo "Result: $result";

?>

The output of the above example is:

Result: 1

Exercise 7

Create an array of fruits and another array

of vegetables. Use array operators to merge these

arrays and display the combined list.

<?php

// Merge arrays of fruits and vegetables

$fruits = ["apple", "banana", "orange"];

$vegetables = ["carrot", "broccoli", "spinach"];

$combined = $fruits + $vegetables;

print_r($combined);

?>

The output of the above example is:

Array ([0] => apple [1] => banana [2] => orange)

Exercise 8
Implement a PHP script that uses a loop to

print the numbers from 1 to 10 using the post-

increment operator.

<?php

// Print numbers from 1 to 10 using post-

increment operator

$i = 1;

while ($i <= 10) {

 echo "$i ";

 $i++;

}

?>

The output of the above example is:

1 2 3 4 5 6 7 8 9 10

Exercise 9

Write a PHP function that takes two strings

as parameters and concatenates them using the

concatenation and assignment operator (.=).

Return the resulting string.

<?php

// Concatenate two strings using .=

function concatenateStrings($str1, $str2)

{

 $str1 .= $str2;

 return $str1;

}

echo concatenateStrings("Hello", " World!");

?>

The output of the above example is:

Hello World!

PHP Expressions

An expression is a combination of values,

variables, operators, and function calls that can be

evaluated to produce a value.

In PHP, an expression is a combination of

values, variables, operators, and function calls that

can be evaluated to produce a single value. These

elements come together to form a logical

operation, and the result of this operation is the

output of the expression.

Components of an Expression:

• Values: These are the raw data elements in

programming. Examples include numbers (3,

10.2), strings (‘Hello World'), and

booleans (true, false).

• Variables: Variables are containers for holding

values. They have names and can store

different values at different points in program’s

execution.

• Operators: Operators are symbols or keywords

that perform operations on values and

variables. Examples include arithmetic

operators (+, -, * /), comparison operators (==,

!=, <, >) and logical operators (&&, ||).

• Function Calls: Functions are reusable blocks

of code that perform specific tasks. When you

call a function, it can return a value. Function

calls typically involve passing arguments

enclosed in parentheses. Visit

@pr0fess0racademy.com

25

Examples of Expressions

Basic Expressions
The simplest forms of expressions are constants

and variables.

For example:

$a = 5; // 5 is an expression with the value 5

$b = $a; // $a is an expression with the value 5

Functions are also expressions. For instance:

function foo() {

return 5;

}

$c = foo(); // foo() is an expression with the value

5

PHP supports four scalar value types: int, float,

string, and bool. It also supports two composite

types: arrays and objects

Arithmetic Expression:

$result = 5 + 3;

Here, the expression 5+3 adds the values 5and 3,

resulting in the value 8.

String Concatenation Expression:

$name = 'John';

$greetings = 'Hello', . $name;

The expression "Hello, " . $name concatenates the

string "Hello, " with the value store in the

variable $name .

Function Call Expression:
$length = strlen('Hello');

The expression calls the strlen function to get the

length of the string 'Hello' , producing the value 5 .

Comparison Expression:

Comparison expressions evaluate to either true or

false. PHP supports various comparison operators:

$a > $b; // greater than

$a >= $b; // greater than or equal to

$a == $b; // equal

$a != $b; // not equal

$a < $b; // less than

$a <= $b; // less than or equal to

$a === $b; // identical (equal and same type)

$a !== $b; // not identical (not equal or not same

type)

Ternary Operator Expression:
$number = 7;

$isEven = ($number % 2 == 0) ? true : false;

The expression uses the ternary operator to

determine if. $number is even,

producing true or false accordingly.

Increment and Decrement Operators
PHP supports pre-increment (++$variable)

and post-increment ($variable++) operators. The
difference lies in the value of the increment
expression: These operators are called increment
and decrement operators respectively. They are
unary operators, needing just one operand and can
be used in prefix or postfix manner, although with
different effect on value of expression.

Both prefix and postfix ++ operators
increment value of operand by 1 (whereas --
operator decrements by 1). However, when used in
assignment expression, prefix makes
increment/decrement first and then followed by
assignment. In case of postfix, assignment is done
before increment/decrement
Uses postfix ++ operator

Example

<?php

$x=10;

$y=$x++; //equivalent to $y=$x followed by

$x=$x+1

echo "x = $x y = $y";

?>

Output

This produces following result

x = 11 y = 10

Whereas following example uses prefix increment

operator in assignment

Example
<?php
$x=10;

Exam Points

PHP expressions are evaluated based on the

precedence and associativity of the operators

involved. PHP follows a standard set of rules to

determine which operations to perform first. For

example, multiplication has a higher precedence

than addition.

$result = 5 + 3 * 2; // Outputs 11, not 16, because

multiplication is done first

26

$y=++$x;; //equivalent to $x=$x+1 followed by
$y=$x
echo "x = $x y = $y";
?>
Output
x = 11 y = 11
Pre-increment increments the variable before
reading its value, while post-increment increments
1the variable after reading its value1.

Assignment Expressions
Assignments in PHP are expressions that evaluate
to the assigned value. For example:
$a = 5; // $a = 5 is an expression with the value 5
$b = ($a = 5); // $b = $a = 5 is like writing $a = 5;
$b = 5;
Assignments are parsed from right to left, so you
can write:
$b = $a = 5;

Practice Questions
1. What will the following PHP expression
output? echo 5 + 10 * 2;
A) 15 B) 25 C) 20 D) 10

2.Which operator is used for string
concatenation in PHP?
A) . B) + C) & D) *

3. What will the value of $x be after executing $x
= 5; $x += 10;?
A) 15 B) 10 C) 5 D) 0

4. What is the result of the following expression:
true && false?
A) true B) false C) null D) 1

5. Which of the following will compare two
values for equality without type conversion?
A) == B) === C) != D) !==

6. What does the ?? operator do in PHP?
A) Returns the first operand if it's true
B) Returns the first non-null operand
C) Concatenates two strings
D) Compares two values

7. What will the output of the following code be?
php
$a = 1;
$b = '1';
if ($a == $B) {
 echo "Equal";
} else {
 echo "Not Equal";
}
A) Equal B) Not Equal
C) Error D) Undefined

8. Which operator would you use to increment a
variable by one?
A) ++ B) +1 C) +=1 D) --

9. In PHP, what is the result of 10 % 3?
A) 3 B) 1 C) 0 D) 10

10. What will isset($var) return if $var is not
defined?

A) true B) false
C) null D) undefined

11. What will the expression !(true || false)
evaluate to?
A) true B) false C) null D) 1

12. Which operator is used to check if a variable
is not set or is null?
A) isset() B) empty() C) ! D) ??

13. What will the result of the expression 5 ** 2
be in PHP?
A) 10 B) 25 C) 2.5 D) 5

14. If $a = 5; $b = 3; what will $a <=> $b
evaluate to?
A) -1 B) 0 C) 1 D) null

15. What will the output of echo 10 == "10"; be?
A) true B) false C) 1 D) Error

16. Which of the following operators is not a
bitwise operator?
A) & B) | C) ^ D) &&

17. What will the following code output?
$x = 10;
$y = 20;
$result = $x < $y ? 'Less' : 'Greater';
echo $result;
A) Less B) Greater
C) Error D) 10

18. What is the outcome of array(1, 2, 3) +
array(4, 5, 6)?
A) array(1, 2, 3, 4, 5, 6)
B) array(1, 2, 3)
C) Error
D) array(0 => 1, 1 => 2, 2 => 3)

19. Which of the following is the correct way to
concatenate two strings in PHP?
A) $str1 & $str2 B) $str1 + $str2
C) $str1 . $str2 D) $str1 * $str2

20. What will the result of 5 == '5' be in PHP?
A) true B) false C) 1 D) 0

Ans : 1-b,2-a,3-a,4-b,5-b,6-b,7-a,8-a,9-b,10-b,11-b,12-d,13-b,14-c,15-a,16-d,17-a,18-b,19-c,20-a

https://www.bing.com/ck/a?!&&p=90eba7ef8e2eea41e61c52e1bcbfa773b6255c4dd3e6a9f88bdbf9c42fa22dcaJmltdHM9MTczNTY4OTYwMA&ptn=3&ver=2&hsh=4&fclid=372332ec-968d-6d05-0660-27ca97206c6e&u=a1aHR0cHM6Ly93d3cucGhwLm5ldC9tYW51YWwvZW4vbGFuZ3VhZ2UuZXhwcmVzc2lvbnMucGhw&ntb=1

PAYMENT DETAILS&
ENROLLMENT PROCESS

BOOKS ONLY

ACTUAL FEE

3999
₹

5999
₹

COURSE ONLY

ACTUAL FEE

8999
₹

14999
₹

COURSE + BOOKS

ACTUAL FEE

11999
₹

19999
₹

Step 1: Register Online on Our Website or App.

Step 2: Choose Your Course and Complete Payment

Step 3: Receive Login Details and Begin Your Journey!

Step 4: Our dedicated support team is here to assist you at every step.

SCAN HERE
TO REGISTER

www.professoracademy.com

Books will be provided only after the full payment of fees has been made.NOTE*

An additional charge of Rs. 300 for courier charge payments is excluded in the original course fee.

�����
�������

�����
������

�����
������

RAJESHWARI NDEVASAGAYAM DISWARYA P

Click here to
Watch more Achiever’s Talks

Professor Academy

Professor Academy's Pride
TRB State Rankers

��
���������������������������������
�	��������
�
�����������������
�����
������������
�����������������
�����	��
�����
���
������

VINITHA. M | STATE 6TH RANK

�
������
����
�������������
�����
�����
�����
�����������
����
���������������������������
��
����������������
��
������
����
���������������������������������
��	���������������
�
����������	
�
�������
�������������������� 	������	��������������
������
����
������
����­�

Amutha vijayalakshmi. A | STATE 7TH RANK

�
������
� ���
������ ����������� ��
� ����
� ������ �
�� ��
�� �����	�� ��
� ���� ����
�
�
����������
� ����������� ���	������ �
�� ���� ���
��� ��� ��� �	������� ����
� �
���
��� �	�
�����
����������������
���
������

HEMA. P | STATE 8TH RANK

����
��������
�����	����������
������
����
��������������
��
������
����
���������	�
����
������������
�����������
���

�
����������
����
��	���	����
����������
����	
����������
���
�
������������
���������
���
�����
�������
��
������
����
����������
���������������
����	����
��������
���	
����

Aruna Rajeswari. R | STATE 10TH RANK

Achiever’s Testimonials

https://
ww-
w.you-
tube.cowww.professoracademy.com

27

4. Control Structures in PHP

Introduction

In simple terms, a control structure allows

you to control the flow of code execution in your

application. Generally, a program is executed

sequentially, line by line, and a control structure

allows you to alter that flow, usually depending on

certain conditions.

Control structures are core features of the

PHP language that allow your script to respond

differently to different inputs or situations. This

could allow your script to give different responses

based on user input, file contents, or some other

data.

The following flowchart explains how a

control structure works in PHP.

First a condition is checked. If the condition is true,

the conditional code will be executed. The

important thing to note here is that code execution

continues normally after conditional code

execution.

Let's consider the following example

In the above example, the program checks

whether or not the user is logged in. Based on the

user's login status, they will be redirected to either

the Login page or the My Account page. In this

case, a control structure ends code execution by

redirecting users to a different page. This is a

crucial ability of the PHP language.

Different types of control
structures:

PHP supports a number of different control

structures:

• if

• else

• elseif

• switch

• while

• do-while

• for

• foreach and more

PHP If Statement

The if construct allows you to execute a

piece of code if the expression provided along with

it evaluates to true.

Syntax

The syntax for if… then… else is;

<?php

if (condition is true) {

block one

else

block two

}

28

?>

Let's have a look at the following example to

understand how it actually works.

The code below uses “if… then… else” to

determine the larger value between two numbers.

<?php

$first_number = 7;

$second_number = 21;

if ($first_number > $second_number){

echo "$first_number is greater than

$second_number";

}else{

echo "$second_number is greater than

$first_number";

}

?>

Output:

21 is greater than 7

PHP Else Statement

In the previous section, we discussed the if

construct, which allows you to execute a piece of

code if the expression evaluates to true. On the

other hand, if the expression evaluates to false, it

won't do anything. More often than not, you also

want to execute a different code snippet if the

expression evaluates to false. That's where the else

statement comes into the picture.

You always use the else statement in

conjunction with an if statement. Basically, you can

define it as shown in the following pseudo-code.

if (expression)

{

 // code is executed if the expression evaluates to

TRUE

}

else

{

 // code is executed if the expression evaluates to

FALSE

}

Let's revise the previous example to

understand how it works.

<?php

$age = 50;

if ($age < 30)

{

 echo "Your age is less than 30!";

}

else

{

 echo "Your age is greater than or equal to 30!";

}

?>

Output:

Your age is greater than or equal to 30!

So when you have two choices, and one of them

must be executed, you can use the if-else

construct.

PHP Else If Statement

We can consider the elseif statement as an

extension to the if-else construct. If you've got

more than two choices to choose from, you can use

the elseif statement.

Let's study the basic structure of the elseif

statement, as shown in the following pseudo-code.

if (expression1)

{

 // code is executed if the expression1 evaluates

to TRUE

}

elseif (expression2)

{

 // code is executed if the expression2 evaluates

to TRUE

}

elseif (expression3)

{

 // code is executed if the expression3 evaluates

to TRUE

}

else

{

 // code is executed if the expression1,

expression2 and expression3 evaluates to FALSE,

a default choice

}

Again, let's try to understand it using a real-

world example.

<?php

29

$age = 50;

if ($age < 30)
{
 echo "Your age is less than 30!";
}
elseif ($age > 30 && $age < 40)
{
 echo "Your age is between 30 and 40!";
}
elseif ($age > 40 && $age < 50)
{
 echo "Your age is between 40 and 50!";
}
else
{
 echo "Your age is greater than 50!";
}
?>
Output
Your age is greater than 50!

As you can see in the above example, we
have multiple conditions, so we've used a series of
elseif statements. In the event that all if conditions
evaluate to false, it executes the code provided in
the last else statement.

PHP Switch Statement
The switch statement is somewhat similar

to the elseif statement which we've just discussed
in the previous section. The only difference is the
expression which is being checked.

In the case of the elseif statement, you have
a set of different conditions, and an appropriate
action will be executed based on a condition. On
the other hand, if you want to compare a variable
with different values, you can use the switch
statement.

As usual, an example is the best way to understand

the switch statement.

<?php

$favourite_site = 'Code';

switch ($favourite_site) {

 case 'Business':

 echo "My favourite site is

business.tutsplus.com!";

 break;

 case 'Code':

 echo "My favourite site is code.tutsplus.com!";

 break;

 case 'Web Design':

 echo "My favourite site is

webdesign.tutsplus.com!";

 break;

 case 'Music':

 echo "My favourite site is music.tutsplus.com!";

 break;

 case 'Photography':

 echo "My favourite site is

photography.tutsplus.com!";

 break;

 default:

 echo "I like everything at tutsplus.com!";

}

?>

As you can see in the above example, we

want to check the value of the $favourite_site

variable, and based on the value of the

$favourite_site variable, we want to print a

message.

For each value you want to check with the

$favourite_site variable, you have to define the case

block. If the value is matched with a case, the code

associated with that case block will be executed.

After that, you need to use the break statement to

end code execution.

Exam Points

The break statement is used inside switch (and

other loops) to terminate the loop or switch case

early. Without break, the program will continue

checking the subsequent cases, which may not be

desirable.

30

If you don't use the break statement, script

execution will be continued up to the last block in

the switch statement.

Finally, if you want to execute a piece of

code if the variable's value doesn't match any case,

you can define it under the default block. Of

course, it's not mandatory—it's just a way to

provide a default case.

So that's the story of conditional control

structures. We'll discuss loops in PHP in the next

section.

Loops in PHP

Loops in PHP are useful when you want to

execute a piece of code repeatedly until a

condition evaluates to false. So code is executed

repeatedly as long as a condition evaluates to true,

and as soon as the condition evaluates to false, the

script continues executing the code after the loop.

While Loop in PHP

The while loop is used when you want to execute a

piece of code repeatedly until the while condition

evaluates to false.

You can define it as shown in the following

pseudo-code.

while (expression)

{

 // code to execute as long as expression

evaluates to TRUE

}

Let's have a look at a real-world example to

understand how the while loop works in PHP.

<?php

$max = 0;

echo $i = 0;

echo ",";

echo $j = 1;

echo ",";

$result=0;

while ($max < 10)

{

 $result = $i + $j;

 $i = $j;

 $j = $result;

 $max = $max + 1;

 echo $result;

 echo ",";

}

?>

Output

0,1,1,2,3,5,8,13,21,34,55,89,

If you're familiar with the Fibonacci series, you

might recognize what the above program does—it

outputs the Fibonacci series for the first ten

numbers. The while loop is generally used when

you don't know the number of iterations that are

going to take place in a loop.

Do-While Loop in PHP

The do-while loop is very similar to the while

loop, with the only difference being that the while

condition is checked at the end of the first iteration.

Thus, we can guarantee that the loop code is

executed at least once, irrespective of the result of

the while expression.

31

syntax of the do-while loop.

do

{

 // code to execute

} while (expression);

Let's go through a real-world to understand

possible cases where you can use the do-

while loop.

<?php

$handle = fopen("file.txt", "r");

if ($handle)

{

 do

 {

 $line = fgets($handle);

 // process the line content

 } while($line !== false);

}

fclose($handle);

?>

In the above example, we're trying to read a file

line by line. Firstly, we've opened a file for reading.

In our case, we're not sure if the file contains any

content at all. Thus, we need to execute the fgets

function at least once to check if a file contains any

content. So we can use the do-while loop here. do-

while evaluates the condition after the first iteration

of the loop.

For Loop in PHP

Generally, the for loop is used to execute a

piece of code a specific number of times. In other

words, if you already know the number of times

you want to execute a block of code, it's the for loop

which is the best choice.

Let's have a look at the syntax of the for loop

for (expr1; expr2; expr3)

{

 // code to execute

}

The expr1 expression is used to initialize variables,

and it's always executed. The expr2 expression is

also executed at the beginning of a loop, and if it

evaluates to true, the loop code is executed.

After execution of the loop code, the expr3 is

executed. Generally, the expr3 is used to alter the

value of a variable which is used in the expr2

expression.

Let's go through the following example to see

how it works.

<?php

for ($i=1; $i<=10; ++$i)

{

 echo sprintf("The square of %d is %d.</br>", $i,

$i*$i);

}

?>

The above program outputs the square of the first

ten numbers. It initializes $i to 1, repeats as long as

$i is less than or equal to 10, and adds 1 to $i at

each iteration.

For Each in PHP

The foreach loop is used to iterate over array

variables. If you have an array variable, and you

want to go through each element of that array, the

foreach loop is the best choice.

Let's have a look at a couple of examples.

<?php

$fruits = array('apple', 'banana', 'orange', 'grapes');

foreach ($fruits as $fruit)

{

 echo $fruit;

 echo "
";

}

$employee = array('name' => 'John Smith', 'age'

=> 30, 'profession' => 'Software Engineer');

foreach ($employee as $key => $value)

{

 echo sprintf("%s: %s</br>", $key, $value);

 echo "
";

}

?>

If you want to access array values, you can use the

first version of the foreach loop, as shown in the

above example. On the other hand, if you want to

access both a key and a value, you can do it as

shown in the $employee example above.

32

Breaking Out of the Loop

There are times when you might want to

break out of a loop before it runs its course. This

can be achieved easily using the break keyword. It

will get you out of the current for, foreach, while,

do-while, or switch structure.

You can also use break to get out of multiple

nested loops by supplying a numeric argument. For

example, using break 3 will break you out of 3

nested loops. However, you cannot pass a variable

as the numeric argument if you are using a PHP

version greater than or equal to 5.4

<?php

echo "Simple Break\n";

for($i = 1; $i <= 2; $i++) {

 echo "$i = $i ";

 for($j = 1; $j <= 5; $j++) {

 if($j == 2) {

 break;

 }

 echo "$j = $j ";

 }

 echo "\n";

}

echo "Multi-level Break\n";

for($i = 1; $i <= 2; $i++) {

 echo "$i = $i ";

 for($j = 1; $j <= 5; $j++) {

 if($j == 2) {

 break 2;

 }

 echo "$j = $j ";

 }

 echo "\n";

}

Output

Simple Break

1 = 1 1 = 1

2 = 2 2 = 1

Multi-level Break

1 = 1 1 = 1

Another keyword that can interrupt loops in PHP

is continue. However, this only skips the rest of the

current loop iteration instead of breaking out of the

loop altogether. Just like break, you can also use a

numerical value with continue to specify how many

nested loops it should skip for the current iteration.

<?php

echo 'Simple Continue';

for($i = 1; $i <= 2; $i++) {

 echo "\n".'$i = '.$i.' ';

 for($j = 1; $j <= 5; $j++) {

 if($j == 2) {

 continue;

 }

 echo '$j = '.$j.' ';

 }

}

/*

Simple Continue

i = 1 j = 1 j = 3 j = 4 j = 5

i = 2 j = 1 j = 3 j = 4 j = 5

*/

echo 'Multi-level Continue';

for($i = 1; $i <= 2; $i++) {

 echo "\n".'$i = '.$i.' ';

 for($j = 1; $j <= 5; $j++) {

 if($j == 2) {
 continue 2;

 }

 echo '$j = '.$j.' ';

 }

}

/*

Multi-level Continue

i = 1 j = 1

i = 2 j = 1

*/
?>

Exam Points

The goto statement in PHP allows you to jump to

another part of the program. It’s often discouraged,

as it can lead to code that’s difficult to understand

and maintain, but it can be useful in specific cases.

<php>

goto mylabel;

echo "This will be skipped.";

mylabel:

echo "This will be executed.";

<?php>

33

PHP Mixing Decisions and looping with Html

Combining of decisions (if statement) and looping (foreach loop) in PHP within an HTML

document. In this example, we'll use PHP to list of even and odd numbers based on user input:

Here's a simple example that demonstrates the use

of decisions (if statement) and looping (for loop)

within an HTML document:

Code:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport"

content="width=device-width, initial-scale=1.0">

 <title>PHP Decision and Looping

Example</title>

</head>

<body>

 <h1>PHP Decision and Looping

Example</h1>

 <form action="" method="post">

 <label for="userInput">Enter a

number:</label>

 <input type="number" name="userInput"

id="userInput" required>

 <input type="submit" value="Generate

Numbers">

 </form>

 <?php

 // Check if the form is submitted

 if ($_SERVER["REQUEST_METHOD"] ==

"POST") {

 // Get user input

 $userInput = $_POST["userInput"];

 // Validate input to ensure it's a positive integer

 if (is_numeric($userInput) && $userInput > 0 &&

$userInput == round($userInput)) {

 echo "<h2>Generated Numbers:</h2>";

 // Looping: foreach loop to generate even and

odd numbers

 echo "<p>Even Numbers: ";

 for ($i = 0; $i <= $userInput; $i += 2) {

34

 echo "$i ";

 }

 echo "</p>";

 echo "<p>Odd Numbers: ";

 for ($i = 1; $i <= $userInput; $i += 2) {

 echo "$i ";

 }

 echo "</p>";

 } else {

 // Display an error message for invalid input

 echo "<p style='color: red;'>Please enter a valid

positive integer.</p>";

 }

 }

 ?>

</body>

</html>

Output:

In this example:

1. The user is prompted to enter a number.

2. When the form is submitted, PHP checks if

the input is a positive integer.

3. If the input is valid, PHP uses a foreach loop

to generate and display even and odd

numbers up to the user's input.

4. If the input is invalid, an error message is

displayed in red.

This example showcases how PHP can be used for

decision-making (checking user input) and looping

(generating and displaying numbers) within an

HTML document.

Practice Questions
1. Which of the following is the correct syntax

for a conditional statement in PHP?

A) if condition { } B) if (condition) { }

C) if condition: D) if [condition] { }

2.What will the following code output?

$x = 10;

if ($x > 5) {

 echo "Greater";

} else {

 echo "Smaller";

}

A) Greater B) Smaller

C) 10 D) Error

3. Which control structure is used to execute a

block of code multiple times?

A) if B) switch C) for D) echo

4. What is the purpose of the break statement in

PHP?

A) To exit a function

B) To terminate a loop or switch

C) To stop the script execution

D) To continue to the next iteration

5. Which of the following is the correct syntax

for a switch statement?

A) switch (expression) { case x: }

B) switch expression { case x: }

C) switch { case x: expression }

D) switch (expression) case x:

6. What will the output of the following code be?

$day = 3;

switch ($day) {

 case 1:

 echo "Monday";

 break;

 case 2:

 echo "Tuesday";

 break;

 case 3:

 echo "Wednesday";

 break;

 default:

 echo "Not a valid day";

}

A) Monday B) Tuesday

C) Wednesday D) Not a valid day

7. In a for loop, which part is executed only

once?

A) Initialization B) Condition

C) Increment/Decrement D) Body of the loop

8. What does the continue statement do in a

loop?

A) Exits the loop

B) Stops the current iteration and continues to the next

C) Restarts the loop

D) Skips the next iteration

35

9. How many times will the following code block

execute?

for ($i = 0; $i < 5; $i++) {

 echo $i;

}

A) 4 B) 5 C) 6 D) 0

10. Which of the following correctly defines a

while loop?

A) while (condition) { } B) while condition { }

C) while { condition } D) while: condition { }

11. Which of the following is the correct syntax

for a foreach loop?

A) foreach (array as value) { }

B) foreach array as value { }

C) foreach (array as value) { }

D) foreach (value in array) { }

12. What will the following code output?

$i = 0;

while ($i < 3) {

 echo $i;

 $i++;

}

A) 012 B) 123 C) 321 D) 00

13. What is the purpose of the else if statement?

A) To execute a block of code if the first condition is

false

B) To create a loop

C) To exit from a switch statement

D) To initialize a variable

14. What will the result of the following code be?

$x = 10;

if ($x == 10) {

 echo "Ten";

} elseif ($x == 20) {

 echo "Twenty";

} else {

 echo "Not Ten or Twenty";

}

A) Ten B) Twenty

C) Not Ten or Twenty D) Error

15. Which loop will always execute at least

once?

A) for B) while

C) do...while D) foreach

16. What will the following code output?

$day = "Saturday";

if ($day == "Saturday" || $day == "Sunday") {

 echo "Weekend";

} else {

 echo "Weekday";

}

A) Weekend B) Weekday

C) Saturday D) Error

17. How do you define a multi-line comment in

PHP?

A) // This is a comment

B) /* This is a comment */

C) # This is a comment

D) <!-- This is a comment -->

18. What does the switch statement evaluate?

A) A single condition

B) Multiple conditions simultaneously

C) An expression

D) A function

19. In a do...while loop, when is the condition

checked?

A) Before executing the loop

B) After executing the loop

C) During the loop

D) Never checked

20. What will be the output of the following

code?

$x = 5;

if ($x < 10) {

 echo "Less than 10";

} else {

 echo "10 or more";

}

A) Less than 10 B) 10 or more

C) 5 D) Error

Ans : 1-b,2-a,3-c,4-b,5-a,6-c,7-a,8-b,9-b,10-a,11-a&c,12-a,13-a,14-a,15-c,16-a,17-b,18-c,19-

b,20-a

"The secret to getting ahead is getting started." – Mark Twain

+91 707070 1005
+91 707070 1009

www.professoracademy.com

COMPUTER SCIENCE

Professor Academy

��������������������
�����������������

���������
���������
�������
���������
��

	�������
�
�������
����
�
�
������������
�

��
	������

���
�����������������

��������������
����������� ��­
������

�����

��
���
�����
�
�����
�����	��

Online Live
Classes

Study
Material

New Syllabus
2024

100+ Test
Series

SupportRecorded
Access

Professor Academy

www.professoracademy.com

PG TRB 2025

ONLINE COURSE

VIRTUAL CLASS FEATURES

������������	����������������

������	��	������������������
��
���������������

�������
�������

 ���­��������

�	�����������	��������������������
�
�����������	��������������������
�

������������������
���������������
�������
�

���������������������������

�

���­���
����
���
�����
���������
��������
����
��

���
�����
���������
��������������
���������

www.professoracademy.com

COURSE BENEFITS

APP FEATURES

�������	�������

��������������������������������������

�������

������������������������������������
�
��

�

�����	����������
�������	����
���������������
�

�

�����	����������
�������	��������
	���������	��

�	�����������������������������������

��
�

��������������
������

����������������

������������������������

���
�������
�������
��������
���������
���������������
������������
������������������������������

Explore

Learn

Succeed

Download

www.professoracademy.com

TEST SERIES

�����
������
�������
���� ��
����
��������������

��������

�����������
�������
������
�����

���������
������
�����������
��
�
���������	�
��
��������������
�������������

Download & Explore!

���

�����������������������

�������
���

­��������������������
��
�����������������������������

www.professoracademy.com

STUDY MATERIALS

������������������������������������ ��­
������������
������
���

���������
������
�����������
��
�
���������	�
�
��������������
�������������

��������
���������		���������������������������

���������������������		�

�����
�	��������������	������

Based on New Syllabus

www.professoracademy.com

��
������ ��­������� ��­������������������������
������
��

 Rs. 300 for courier charge payments is excluded

PAYMENT DETAILS&
ENROLLMENT PROCESS

BOOKS ONLY

ACTUAL FEE

3999
₹

5999
₹

COURSE ONLY

ACTUAL FEE

8999
₹

14999
₹

COURSE + BOOKS

ACTUAL FEE

11999
₹

19999
₹

Step 1: Register Online on Our Website or App.

Step 2: Choose Your Course and Complete Payment

Step 3: Receive Login Details and Begin Your Journey!

Step 4: Our dedicated support team is here to assist you at every step.

SCAN HERE
TO REGISTER

www.professoracademy.com

Books will be provided only after the full payment of fees has been made.NOTE*

An additional charge of Rs. 300 for courier charge payments is excluded in the original course fee.

�����
�������

�����
������

�����
������

RAJESHWARI NDEVASAGAYAM DISWARYA P

Click here to
Watch more Achiever’s Talks

Professor Academy

Professor Academy's Pride
TRB State Rankers

��
���������������������������������
�	��������
�
�����������������
�����
������������
�����������������
�����	��
�����
���
������

VINITHA. M | STATE 6TH RANK

�
������
����
�������������
�����
�����
�����
�����������
����
���������������������������
��
����������������
��
������
����
���������������������������������
��	���������������
�
����������	
�
�������
�������������������� 	������	��������������
������
����
������
����­�

Amutha vijayalakshmi. A | STATE 7TH RANK

�
������
� ���
������ ����������� ��
� ����
� ������ �
�� ��
�� �����	�� ��
� ���� ����
�
�
����������
� ����������� ���	������ �
�� ���� ���
��� ��� ��� �	������� ����
� �
���
��� �	�
�����
����������������
���
������

HEMA. P | STATE 8TH RANK

����
��������
�����	����������
������
����
��������������
��
������
����
���������	�
����
������������
�����������
���

�
����������
����
��	���	����
����������
����	
����������
���
�
������������
���������
���
�����
�������
��
������
����
����������
���������������
����	����
��������
���	
����

Aruna Rajeswari. R | STATE 10TH RANK

Achiever’s Testimonials

https://
ww-
w.you-
tube.cowww.professoracademy.com

