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EXPERIMENTAL PHYSICS



1. UNITS

All the measurable quantities that are used to express the laws of physics are called Physical Quantities. 

For example: Distance, Mass, Force etc.  In our daily life, measuring and comparing the magnitude of 

different quantities is quite essential. Measurement implies comparison of any unknown physical 

quantity with a known fixed physical quantity. The known fixed physical quantity is known as unit.  In 

other words, unit is the quantity used as standard for measurement. For example, let the length of the 

classroom be 10 metre.  That means, the length of classroom is compared with the standard quantity of 

length called metre. 

i.e. Physical quantity = value unit

Ex. Length =10 m 

C.G.S, F.P.S and M.K.S are the measurement systems that were used for the measurement of physical

quantities in earlier times.

C.G.S system: In this system, the unit of length is centimetre, the unit of mass is gram, and the unit of

time is second.  The CGS system is built on smaller fundamental units, which makes it beneficial in

domains such as electromagnetism and optics.  Unlike the MKS/SI system, many CGS-derived units

have distinct scaling factors, resulting in more difficult conversions.  Although the MKS/SI system has

completely supplanted the CGS system in most scientific and technical applications, it is still utilized in

some fields such as astrophysics and electromagnetism.

F.P.S system: In this system, the unit of length is foot, the unit of mass is pound, and the unit of time is 

second.   This approach is widely utilized in the United States and a few other countries, particularly in 

engineering and construction. Specific industries, such as aviation and military, still use English units. 

M.K.S: In this system, the unit of length is metre, unit of mass is kg, and the unit of time is second. It is

a coherent system, which means that derived units are directly based on base units, with no arbitrary

conversion factors. It serves as the foundation for the present SI system and is widely utilized in science

and most sectors.

S.I System: This system is an improved and extended version of M.K.S system of units. From 1971 till

date, the internationally accepted unit system for measurement is Système International d’units (SI

units).

Important notes: 

• In India, the National Physical Laboratory (New Delhi) has the responsibility of maintenance and

improvement of physical standards of length, mass, time, etc.

• The ‘CGS’, ‘MKS’ and SI units are decimal or metric systems of units and ‘FPS’ is not a metric

system. It is a British system of units.

• In December 1998, the National Aeronautics and Space Administration (NASA), USA, launched

the Mars Climate Orbiter to collect data about the Martian climate. Nine months later, on

September 23, 1999, the Orbiter disappeared while approaching Mars at an unexpectedly low

altitude. An investigation revealed that the orbital calculations were incorrect due to an error in

the transfer of information between the spacecraft’s team in Colorado and the mission navigation

team in California. One team was using the English FPS system of units for calculation, while the

other team was using the MKS system of units. This misunderstanding caused a loss of 125 million

dollars approximately.
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Significance of SI unit: 

• Universally accepted for scientific, commercial, and industrial applications. 

• It is a logical and decimal-based approach that facilitates conversions. 

• SI units are exceedingly accurate and reproducible. 

• Encourages worldwide collaboration in science, technology, and commerce.  
 

Classification: 

With the development of science & technology, the three fundamental quantities like mass, length & 

time were not sufficient and hence many other quantities like electric current, heat etc. were introduced. 

Thus, unit system was modified with addition of four other fundamental quantities and two 

supplementary quantities. Units are broadly classified into: 

• Fundamental (base) units  

• Derived units and  

• Supplementary units 
 

i) Fundamental (base) units: 

There are seven fundamental quantities such as Length, Mass, Time, Electric current, Temperature, 

Amount of substance and Luminous intensity. From the combinations of these basic quantities, all other 

physical quantities can be derived. The units corresponding to fundamental quantities are called 

fundamental units and they are listed below. 
 

BASIC QUANTITY SI UNIT SYMBOL 

Length Metre M 

Mass Kilogram Kg 

Time Second s 

Electric current Ampere A 

Temperature Kelvin K 

Amount of substance Mole Mol 

Luminous intensity Candela Cd 
 

1. Meter (m) - Unit of Length 

The unit of length is meter (m). It is used to calculate the separation between two points or the size or 

extend of items. The meter is defined as the distance that light travels in a vacuum at a time interval of 

1/299,792,458 seconds. 
 

2. Kilogram (kg) - Unit of Mass 

The unit used for defining mass is kilogram (kg). That is, it is a tool for calculating an object's mass. 

The kilogram is defined as the mass of a platinum-iridium cylinder, which serves as the worldwide 

prototype for the kilogram, or as the Planck constant.  
 

The range of masses for different objects: 

Object Order of Mass (kg) 

Electron 10−30 kg 

Proton or Neutron 10−27 kg 

Uranium atom 10−25 kg 

Red blood corpuscle 10−14 kg 

A cell 10−10 kg 

Object Order of Mass 

(kg) 

Dust particle 10−9 kg 

Raindrop 10−6 kg 

Mosquito 10−5 kg 

Grape 10−3 kg 
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Frog 10−1 kg 

Human 102 kg 

Car 103 kg 

Ship 105 kg 

Moon 1023 kg 

Earth 1025 kg 

Sun 1030 kg 

Milky way 1041 kg 

Observable Universe 1055 kg 

 

3. Second (s) – Unit of Time  

The unit used for defining time is second (s). It is used to calculate Used to calculate how long events 

or the time between them last. The second is defined by the frequency of the radiation corresponding 

to the transition between two hyperfine levels of the ground state of the cesium-133 atom. It is 

9,192,631,770 periods of this radiation. 
 

The order of time intervals for different events: 

Event Order of Time Interval (s) 

Lifespan of the most unstable particle 10−24 s 

Time taken by light to cross a distance of nuclear size 10−22 s 

Period of X-rays 10−19 s 

Time period of electron in hydrogen atom 10−15 s 

Period of visible light waves 10−15 s 

Time taken by visible light to cross through a windowpane 10−8 s 

Lifetime of an excited state of an atom 10−8 s 

Period of radio waves 10−6 s 

Time period of audible sound waves 10−3 s 

Wink of an eye 10−1 s 

Travel time of light from Moon to Earth 102 s 

Travel time of light from Sun to Earth 102 s 

Half-life time of a free neutron 103 s 

Time period of a satellite 104 s 

Time period of rotation of Earth around its axis (one day) 105 s 

Time period of revolution of Earth around the Sun (one year) 107 s 

Average life of a human being 109 s 

Age of Egyptian pyramids 1011 s 

Age of Universe 1017 s 
 

 

4. Ampere (A) - Unit of Electric Current 

The unit used for defining Electric current is Ampere (A). It is used to measure the flow of electric charge 

in a conductor. The ampere is defined as the constant current that, if maintained in two straight, parallel 

conductors of infinite length and negligible cross-section, would produce a force of 2 × 10⁻⁷ newtons 

per meter of length between the conductors. 
 

5. Kelvin (K) - Unit of Temperature 

The unit of temperature is kelvin (K). It is used to measure the thermodynamic temperature, which is the 

degree of hotness or coldness of an object or system.  

The kelvin is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water. 

Absolute zero (0 K) is the point at which molecular motion ceases.  
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The primary points for the International Practical Temperature Scale of 1968: 

Temperature Point 
Temperature 

(°C) 

Temperature 

(°F) 

Triple Point of Equilibrium Hydrogen -259.34 -434.81 

Boiling Point of Equilibrium Hydrogen at 25/76 

Normal Pressure 
-256.108 -428.99 

Normal Boiling Point (1 atm) of Equilibrium Hydrogen -252.87 -423.17 

Normal Boiling Point of Neon -246.048 -410.89 

Triple Point of Oxygen -218.789 -361.82 

Normal Boiling Point of Oxygen -182.962 -297.33 

Triple Point of Water 0.01 32.018 

Normal Boiling Point of Water 100.00 212.00 

Normal Freezing Point of Zinc 419.58 787.24 

Normal Freezing Point of Silver 961.93 1763.47 

Normal Freezing Point of Gold 1064.43 1947.97 
 

Conversion Formulas: 

• Celsius to Fahrenheit: F =
9

5
× C + 32 

• Fahrenheit to Celsius: C =
5

9
× (F − 32) 

• Celsius to Kelvin: K =  C +  273.15 

• Kelvin to Celsius: C =  K −  273.15 

• Fahrenheit to Kelvin: K =
5

9
× (F − 32) + 273.15 

• Kelvin to Fahrenheit: F =
9

5
× (K − 273.15) + 32The secondary fixed points for the International 

Practical Temperature Scale of 1968, listing the specific points and their corresponding 

temperatures in degrees Celsius: 

Temperature Point 
Temperature 

(°C) 
Temperature Point 

Temperature 

(°C) 

Triple point, normal H2 -259.194 Freezing point, Hg 356.66 

Boiling point, normal H2 -252.753 Freezing point, S 444.674 

Triple point, Ne -248.595 Freezing point, Cu-Al eutectic 548.23 

Triple point, N2 -210.002 Freezing point, Sb 630.74 

Boiling point, N2 -195.802 Freezing point, Al 660.74 

Sublimation point,  

CO2 (normal) 
-78.476 Freezing point, Cu 1084.5 

Freezing point, Hg -38.862 Freezing point, Ni 1455 

Ice point 0 Freezing point, Co 1494 

Triple point, 

phenoxybenzamine 
26.87 Freezing point, Pd 1554 

Triple point,  

Benzoic acid 
122.37 Freezing point, Pt 1772 

Freezing point, In 156.634 Freezing point, Rh 1963 

Freezing point, Bi 271.442 Freezing point, Ir 2447 
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Freezing point, Cd 321.108 Freezing point, W 3387 

Freezing point, Pb 327.502  
 

6. Mole (mol) - Unit of Amount of Substance 

The unit for amount of substance is mole (mol).  It is used to measure the amount of substance in terms 

of the number of particles (atoms, molecules, ions, etc.). 

The mole is the amount of substance that contains as many entities (atoms, molecules, etc.) as there are 

in 12 grams of carbon-12. This is approximately 6.022 × 10²³ entities. 
 

7. Candela (cd) - Unit of Luminous Intensity 

The unit for luminous intensity is candela (cd). It is used to measure the perceived power of light in a 

specific direction. 

The candela is the luminous intensity, in a given direction, of a source that emits monochromatic 

radiation of frequency 540 × 10¹² hertz and that has a radiant intensity of 1/683 watts per steradian 

in that direction. 
 

ii) Derived units: 

The units that are expressed in terms of fundamental units are called derived units.  For example, the 

unit of velocity can be derived by finding its relationship with basic quantities such as length and time.  

velocity =
displacement

time
 

 

Thus, the unit of velocity is determined to be m/s.  Some of the examples for derived units are as follows: 

Physical Quantity Formula Symbol Notation 

Area Length × Width A m² 

Volume Length × Width × Height V m³ 

Frequency 1 / Period F Hz, s⁻¹ 

Density Mass / Volume Ρ kg/m³ 

Velocity Displacement / Time V m/s 

Angular Velocity Angle / Time Ω rad/s 

Acceleration Velocity / Time A m/s² 

Angular Acceleration Angular Velocity / Time Α rad/s² 

Volumetric Flow Rate Volume / Time Q m³/s 

Force Mass × Acceleration F N (kg · m/s²) 

Surface Tension Force / Length γ, σ N/m, J/m² 

Pressure Force / Area P N/m², Pa (kg/m · s²) 

Dynamic Viscosity Shear Stress / Velocity Gradient η, μ N · s/m², Pl (kg/m · s) 

Kinematic Viscosity Dynamic Viscosity / Density Ν m²/s 

Work, Energy Force × Distance W, E J, N · m (kg · m²/s²) 

Power Work / Time P W (J/s) 

Heat Flux Density Heat Flow / Area Q W/m² 

Volumetric Heat Release 

Rate 
Heat Flow / Volume Q̇ W/m³ 
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Heat-Transfer Coefficient 
Heat Flow / (Area × 

Temperature Difference) 
H W/m² · K 

Specific Enthalpy Enthalpy / Mass H J/kg 

Specific Heat Capacity Heat / (Mass × Temperature) C J/kg · K 

Thermal Conductivity 
Heat Flow / (Area × 

Temperature Gradient) 
K W/m · K 

Mass Flow Rate Mass / Time ṁ kg/s 

Mass Flux Density Mass Flow Rate / Area jₘ kg/m² · s 

Mass-Transfer Coefficient Mass Flow / Area Β m/s 

Electric Charge Current × Time Q C (A · s) 

Electromotive Force Work / Charge E, emf V (kg · m²/A · s³) 

Electrical Resistance Voltage / Current R Ω (kg · m²/A² · s³) 

Electrical Conductivity 1 / Resistivity Σ S/m (A² · s³/kg · m³) 

Electric Capacitance Charge / Voltage C F (A² · s⁴/kg · m²) 

Magnetic Flux Magnetic Field × Area Φ Wb (kg · m²/A · s²) 

Inductance Magnetic Flux / Current L H (kg · m²/A² · s²) 

Magnetic Permeability Inductance / Length µ H/m (kg · m/A² · s²) 

Magnetic Flux Density Magnetic Flux / Area B T (kg/A · s²) 

Magnetic Field Strength 
Magnetic Force / (Current × 

Length) 
H A/m 

Luminous Flux Luminous Intensity × Solid Angle Φv lm (cd · sr) 

Luminance Luminous Flux / Area L cd/m² 

Illuminance Luminous Flux / Area E lx (lm/m²) 
 

iii) Supplementary units: 

In the International System of Units (SI), the term "supplementary units" referred to a specific set of units 

that were not classified as fundamental (base) or derived units but were used to describe specific 

quantities related to geometry or angles. However, the distinction of supplementary units has been 

removed in the current definition of SI units. As of the 2019 redefinition of the SI system, the concept of 

supplementary units is no longer formally part of the SI system. The supplementary quantities of plane 

and solid angle were converted into Derived quantities in 1995 (CGPM) 

Nevertheless, it's useful to know the historical context and what these units were used for: 

SUPPLEMENTARY QUANTITIES SI UNIT SYMBOL 

Plane angle Radian rad 

Solid angle Steradian sr 
 

1. Radian (rad) 

● Quantity: Plane Angle (dθ) 

● Definition: The radian is the angle subtended at the centre of a circle by an arc whose length (ds) 

is equal to the radius(r) of the circle. dθ =
ds

r
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● Relationship to SI Base Units: It is a dimensionless quantity because it is defined as the ratio of 

two lengths (arc length and radius). 
 

2. Steradian (sr) 

● Quantity: Solid Angle 

● Definition: The steradian is the unit of solid angle in three-dimensional space. A solid angle (dΩ) 

is defined by the area on a sphere's surface divided by the square of the radius of the sphere. One 

steradian is subtended by a spherical surface area equal to the square of the radius. dΩ =
dA

r2  where 

dA is the area subtended, and r is the radius. 
 

Rules and Conventions for Writing SI Units and Their Symbols 

Naming Units: Units named after scientists are not written with a capital initial letter. Examples: 

newton, henry, ampere, watt. 
 

Symbols for Units Named After Scientists: Symbols of units named after scientists should be written 

with an initial capital letter. Examples: N for newton, H for henry, A for ampere, W for watt. 
 

Symbols for Units Not Derived from Proper Nouns: Small letters are used as symbols for units not 

derived from a proper noun. Examples: m for metre, kg for kilogram. 
 

Punctuation: No full stop or other punctuation marks should be used within or at the end of symbols. 

Example: 50 m (not 50 m.). 
 

Plural Form: Symbols of units are not expressed in plural form. Example: 10 kg (not 10 kgs). 
 

Temperature: When temperature is expressed in kelvin, the degree sign is omitted. Example: 283 K 

(not 283° K). When expressed in Celsius, the degree sign should be included. Examples: 100°C (not 100 

C), 108°F (not 108 F). 
 

Use of Solidus (/): The solidus (/) is recommended for indicating a division of one unit symbol by 

another. Not more than one solidus should be used. Examples: ms⁻¹ or m/s, JK⁻¹mol⁻¹ (not J/K/mol). 
 

Spacing: The number and units should be separated by a space. Example: 15 kg m⁻¹ s⁻¹ (not 15 kgms⁻¹). 
 

Accepted Symbols: Only accepted symbols should be used. Examples: ampere (A) should not be 

written as amp, second (s) should not be written as sec. 
 

Scientific Notation: Numerical values of physical quantities should be written in scientific notation. 

Example: the density of mercury should be written as 1.36 × 104 kg m−3 (not 13600 kg m⁻³). 
 

The table you provided lists various units that are retained for general use, even though they are 

outside the International System of Units (SI).  

Name Symbol Value in SI Unit 

Minute Min 60 s 

Hour h 60 min = 3600 s 

Day d 24 h = 86400 s 

Year y 365.25 d = 3.156 × 10⁷ s 

Degree ° 1° = (π / 180) rad 

Litre L 1 dm³ = 10⁻³ m³ 

Tonne t 10³ kg 

Carat ct 200 mg 

Curie Ci 3.7 × 10¹⁰ disintegrations per second (dps) 
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Roentgen R 2.58 × 10⁻⁴ C/kg 

Quintal q 100 kg 

Barn b 100 fm² = 10⁻²⁸ m² 

Are a 1 dam² = 10² m² 

Hectare ha 1 hm² = 10⁴ m² 

Standard Atmospheric Pressure atm 101325 Pa = 1.013 × 10⁵ Pa 
 

Prefixes for Powers of Ten 

In the International System of Units (SI), prefixes are used to denote multiples and submultiples of 

units. These prefixes represent powers of ten and make it easier to express very large or very small 

quantities. Here is a list of common SI prefixes for powers of ten: 
 

     Multiples of Ten                       Submultiples of Ten 

Factor Name Symbol 

10¹⁸ Exa E 

10¹⁵ Peta P 

10¹² Tera T 

10⁹ Giga G 

10⁶ Mega M 

10³ Kilo K 

10² Hector H 

10¹ Deca Da 

 
 

Some Important Ranges and Order of Lengths 

Size of Objects and Distances Length (m) 

Distance to the boundary of the observable universe 1026 

Distance to the Andromeda galaxy 1022 

Size of our galaxy 1021 

Distance from Earth to the nearest star (other than the Sun) 1016 

Average radius of Pluto’s orbit 1012 

Distance of the Sun from the Earth 1011 

Distance of Moon from the Earth 108 

Radius of the Earth 107 

Height of Mount Everest above sea level 104 

Length of a football field 102 

Thickness of a paper 10−4 

Diameter of a red blood cell 10−5 

Wavelength of light 10−7 

Length of a typical virus 10−8 

Diameter of the hydrogen atom 10−10 

Size of an atomic nucleus 10−14 

Diameter of a proton 10−15 
 

Cosmic Distances: Distances in the universe range up to 1026 meters, like the distance to the boundary 

of the observable universe. 
 

Factor Name Symbol 

10⁻¹ Deci d 

10⁻² Centi c 

10⁻³ Milli m 

10⁻⁶ Micro µ 

10⁻⁹ Nano n 

10⁻¹² Pico p 

10⁻¹⁵ Femto f 

10⁻¹⁸ Atto a 
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Astronomical Distances: These include distances within our galaxy and solar system, such as the 

distance to the Andromeda galaxy (1022meters) and the distance from the Earth to the nearest star 

(1016meters). 
 

Planetary and Terrestrial Distances: Includes distances within the solar system and on Earth, such 

as the distance from the Sun to the Earth (1011meters) and the height of Mount Everest (104meters). 
 

Microscopic Lengths: These include the sizes of biological and atomic structures, such as the diameter 

of a red blood cell (10−5meters) and the diameter of a hydrogen atom (10−10meters). 
 

Subatomic Lengths: The smallest scales include the size of atomic nuclei (10−14meters) and the 

diameter of a proton (10−15meters). 

Note: Chandrasekhar Limit (CSL) is the largest practical unit of mass. 1 CSL = 1.4 times the mass of the 

Sun The smallest practical unit of time is Shake. 1 Shake = 10−8 s 
 

Some Important practical uses of each of the units: 

Unit Symbol Value Practical Use 

Fermi fm 1 fm = 10−15 m 

Used to describe the size of atomic 

nuclei and subatomic particles in 

nuclear physics. 

Angstrom Å 1 Å = 10−10 m 

Commonly used in materials science, 

crystallography, and the study of 

atomic structures. 

Nanometer nm 1 nm = 10−9 m 

Important in nanotechnology, 

semiconductor manufacturing, and 

the study of molecular biology. 

Micron µm 1 μm = 10−6 m 

Used to measure the size of cells, 

bacteria, and small particles in 

microbiology and medical fields. 

Light Year ly 
1 light year 

= 9.467 × 1015 m 

Used in astronomy to measure vast 

distances between stars and galaxies. 

Astronomical Unit AU 1 AU = 1.496 × 1011 m 

Used to measure the distance 

between celestial bodies, especially 

the Earth and the Sun. 

 

Parsec 
pc 

1 parsec = 3.08 × 1016 m 

= 3.26 light years 

Used in astronomy to measure 

distances between stars and galaxies, 

especially in deep space. 
 

 

Points to remember: 

● Units are classified into Fundamental, derived and supplementary units. 

● The seven fundamental quantities are Length, Mass, Time, Electric current, Temperature, 

Amount of substance and Luminous intensity and the units corresponding to fundamental 

quantities are called fundamental units. 

● Plane angle and solid angle form the supplementary quantities and the units corresponding to 

supplementary quantities are called supplementary units. 

● Derived units are expressed in terms of seven fundamental units and two supplementary units. 
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PRACTICE QUESTIONS 
1. Which of the following is a derived unit? 

a) Meter   b) Kilogram 

c) Newton   d) Ampere 
 

2. What is the SI unit of electric current? 

a) Volt    b) Coulomb 

c) Ampere   d) Ohm 
 

3. Which of the following quantities is 

dimensionless? 

a) Strain   b) Velocity 

c) Force   d) Energy 
 

4. The unit of measurement for magnetic flux 

density is: 

a) Tesla   b) Weber 

c) Henry   d) Gauss 
 

5. Which of the following pairs is incorrectly 

matched? 

a) Luminous intensity - Joule 

b) Electric charge - Coulomb 

c) Frequency - Hertz 

d) Pressure - Pascal 
 

6. The Planck constant has the dimensions of: 

a) Energy   b) Action 

c) Power   d) Momentum 
 

7. Which of the following is not a fundamental 

SI unit? 

a) Second   b) Kelvin 

c) Mole    d) Erg 
 

8. The unit of permittivity of free space (ε₀) is: 

a) C²/N·m   b) N·m²/C² 

c) F/m    d) T·m/A 
 

9. In the CGS system, the unit of viscosity is: 

a) Poise   b) Pascal-second 

c) Centipoise   d) Newton-second 

 

10. What is the SI unit for inductance? 

a) Henry   b) Farad 

c) Tesla   d) Weber 
 

11. The standard kilogram is defined by: 

a) A platinum-iridium cylinder kept in France 

b) The mass of 1 liter of water at 4°C 

c) The mass of a carbon-12 atom 

d) A cylinder of silicon-28 
 

12. Which of the following units is used to 

measure radioactivity? 

a) Gray    b) Sievert 

c) Becquerel   d) Rad 
 

13. The unit "farad" is used to measure: 

a) Capacitance   b) Inductance 

c) Magnetic flux  d) Electric potential 

14. Convert 5 m/s into km/h. 

a) 30 km/h    b) 14 km/h  

c) 46 km/h    d) 18 km/hr 

15. What is the SI unit of resistance? 

a) Ampere       b) Volt   

c) Coulomb      d) Ohm  

16. What is the SI unit of permittivity (ε)? 

a) Newton/metre   b) coulomb/meter  

c) Farads/meter   d) Joules/meter 

17. What is the SI unit of the Surface tension? 

a) N/m    b) J/m   

c) C/m    d) N/m2   

18. What is the SI unit of Heat? 

a) Kelvin    b) Joule  

c) calorie    d) Erg 

 

 

 

 

 

Ans: 1-c,2-c,3-a,4-a,5-a,6-b,7-d,8-c,9-a,10-a,11-a,12-c,13-a,14-d,15-d,16-c,17-a,18-b 

 



 

2. DIMENSIONS OF PHYSICAL QUANTITY 

 

The dimension of a physical quantity is a way of expressing how that quantity is related to the base 

quantities of the International System of Units (SI), like length (L), mass (M), time (T), etc. It provides 

an abstract description of the physical nature of the quantity, which allows us to understand how it 

behaves in terms of fundamental physical concepts. The dimensions of five fundamental physical 

quantities are listed below.  They are denoted using square brackets [].  
 

Fundamental Quantities Dimension 

Length [L] 

Mass [M] 

Time [T] 

Electric current [A] 

Temperature [K] or [θ] 
  

If a physical quantity Q can be expressed as a product of powers of the fundamental quantities, its 

dimensional formula can be written in the form: 

Q=[MaLbTcIdθeNfJg] 

Here, a,b,c,d,e,f,g are the powers (exponents) to which each base quantity is raised in the expression for 

the dimensional formula of the fundamental physical quantities like mass, length, time, electric current, 

thermodynamic temperature, amount of substance and luminous intensity.  But usually, the dimension 

of any physical quantity is represented by the combination of three fundamental quantities like [M], [L] 

and [T].  
 

The dimension of unknown physical quantity can be determined from the formula of the quantity.  For 

example, if we want to find the dimension of Area, then from the formula Area=length x length, its 

dimension can be predicted to be [L2] or [MoL2To] where the power represents the dimension of the 

quantity.  In this case, area has no dependence on mass and time and hence its powers are zero. Some 

of the derived physical quantities are listed below: 
 

Here is the table with the dimensional formulas added for each physical quantity: 

Physical Quantity Expression Unit 
Dimensional 

Formula 

Area length × breadth m² [L2] 

Volume area × height m³ [L3] 

Velocity displacement / time m s⁻¹ [LT−1] 

Acceleration velocity / time m s⁻² [LT−2] 

Angular Velocity angular displacement / time rad s⁻¹ [T−1] 

Angular Acceleration angular velocity / time rad s⁻² [T−2] 

Density mass / volume kg m⁻³ [ML−3] 

Linear Momentum mass × velocity kg m s⁻¹ [MLT−1] 

Moment of Inertia mass × (distance)² kg m² [ML2] 

Force mass × acceleration kg m s⁻² or N [MLT−2] 

Pressure force / area N m⁻² or Pa [ML−1T−2] 

Energy (Work) force × distance N m or J [ML2T−2] 

Power 
work / time 

 
 

J s⁻¹ or watt 

(W) 
[ML2T−3] 
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Impulse force × time N s [MLT−1] 

Surface Tension force / length N m⁻¹ [MT−2] 

Moment of Force 

(Torque) 
force × distance N m [ML2T−2] 

Frequency Cycles ÷ Time Hertz [T−1] 

Electric Charge current × time C [AT] 

Current Density current / area A m⁻² [AL−2] 

Magnetic Induction force / (current × length) 
N A⁻¹ m⁻¹ or 

tesla 
[MLT−2A−1] 

Force Constant force / displacement N m⁻¹ [MT−2] 

Planck's Constant energy of photon / frequency J s [ML2T−1] 

Specific Heat (S) 
heat energy / (mass × 

temperature) 
J kg⁻¹ K⁻¹ [ML2T−2K−1] 

Boltzmann Constant (k) energy / temperature J K⁻¹ [ML2T−2K−1] 

Voltage Energy ÷ Charge Volt [ML2T−3A−1] 

Resistance Voltage ÷ Current Ohm [ML2T−3A−2] 

Capacitance Charge ÷ Voltage Farad [M−1L−2T4A2] 

Magnetic Flux Voltage × Time Weber [ML2T−2A−1] 

Inductance Magnetic Flux ÷ Current Henry [ML2T−2A−2] 
 

Principle of Homogeneity of Dimensions 

Definition: The principle of homogeneity of dimensions states that the dimensions of all the terms in a 

physical expression should be the same. In other words, all terms in an equation must have the same 

dimensional formula for the equation to be dimensionally consistent. 
 

Example: Consider the equation for motion: v2 = u2 + 2as In this equation: 

• v2 (velocity squared) has dimensions [L2T−2]. 

• u2 (initial velocity squared) also has dimensions [L2T−2]. 

• 2as (twice acceleration times displacement) has dimensions [L2T−2]. 
 

Since all terms on both sides of the equation have the same dimensions [L2T−2], the equation is 

dimensionally homogeneous. This confirms that the equation is dimensionally consistent. 

This principle helps to ensure that physical equations are correct and that operations involving physical 

quantities are consistent with their units of measurement. 
 

Physical Quantity / Equation Expression Dimensional Formula 

Kinematic equation for motion v2 = u2 + 2as [L2T−2] 

Displacement 
s = ut +

1

2
at2 

[L] 

Velocity v =
s

t
 [LT−1] 

Acceleration a =
v − u

t
 [LT−2] 

Force (Newton's 2nd Law) F = ma [MLT−2] 

Work W =  F × d [ML2T−2] 

Energy (Kinetic Energy) 
Ek =

1

2
mv2 

[ML2T−2] 

Gravitational Potential Energy U =  mgh [ML2T−2] 
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Power 
P =

W

t
 

[ML2T−3] 

Momentum p =  mv [MLT−1] 

Impulse J =  F × t [MLT−1] 

Work-Energy Theorem W =  ΔE [ML2T−2] 

Gravitational Force (Newton's Law) F = G
m1m2

r2
 [M−1L3T−2] 

Electric Force (Coulomb's Law) F = ke

q1q2

r2
 [M−1L3T−2A2] 

Ohm's Law (for Electric Circuit) V =  IR [ML2T−3A−1] 

Capacitance (for a Parallel Plate Capacitor) 
C =

εA

d
 

[M−1L−3T4A2] 

Inductance 
L =

N2

R
 

[ML2T−2A−2] 

Wave Speed (in a string) 

v = √
T

μ
 

[LT−1] 

Planck's Equation (Energy of Photon) E = hν [ML2T−1] 
 

 

Let’s test what we have learnt so far: Shall we? 
1. Find the dimensional formula for Self-

inductance. 

a) ML2T-2A-2     b) ML2T-2A  

c) ML2T-2    d) MLT-2A-2 

(HINT: e = −L
di

dt
 where e is the emf/potential) 

Answer: a) ML2T-2A-2 

2. Which of the following equation is 

dimensionally incorrect: 

a) v=u+at         

b) s=ut+at2/2   

c) F=ma+bv (where b is a proportional constant)  

d) v=u 

Answer: c) F=ma+bv 

Solution: 

● v=u+at [v]=[u]+[at]: Both the terms in LHS 

and RHS are [LT−1], so it is dimensionally 

homogeneous. 

● s=ut+at2/2 [s]=[ut]+[at2/2]: Both terms are 

in [L], so it is dimensionally homogeneous. 

● F=ma+bv (where b is a proportional 

constant)[F]=[M][LT−2]=[MLT−2]. If b has 

dimensions [M], then [bv]=[MLT−1], which is 

inconsistent. The equation is dimensionally 

incorrect. 

 

3. Find the dimensions of energy (E) using 

E=F⋅L. 

a) ML2T−2    b) ML2T    

c) MLT−2    d) ML2T-2A-2 

Answer: a) ML2T−2 

Solution: [E]=[F]⋅[L]=[MLT−2]⋅[L]=[ML2T−2] 

 

4. The time period T of a pendulum depends 

on: Length l, Gravitational acceleration g. 

Using dimensional analysis, find the formula. 

a) T∝√
l

g
      b) T∝√

l

g
m     

c) T∝√lg     d) T∝√
g

l
 

Answer: a) T∝√
l

g
    

Solution: Assume T∝lagb so: [T]=[l]a[g]b 

Substitute dimensions: [T]=[T]1,[l]=[L],[g]=[LT−2] 

 [T]=[L]a[LT−2]b=[L]a+b[T]−2b 

On equating the powers of L and T: For L: a+b=0 

For T: −2b=1 so b=−1/2 and after solving for a, we 

get a=1/2 

T∝√
l

g
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Limitations of Dimensional analysis 

• This method gives no information about the dimensionless constants in the formula like 1, 2,

……..π, e (Euler number), etc. 

• This method cannot decide whether the given quantity is a vector or a scalar.

• This method is not suitable to derive relations involving trigonometric, exponential and

logarithmic functions.

• It cannot be applied to an equation involving more than three physical quantities.

Applications of Dimensional analysis: 

Dimensional analysis: Understanding the dimensions of fundamental quantities is crucial for 

dimensional analysis, which is used to check the consistency of equations and conversions between 

units. 

Physical laws: The dimensions of fundamental quantities help describe how physical laws are 

formulated. For example, the equation for force F=ma involves mass and acceleration, which is the rate 

of change of velocity (L/T), so the dimensions of force are [M][L][T]−2. 

Unit conversions: Knowing the dimensions of fundamental quantities helps in converting between 

different units and systems of measurement. 

Points to remember: 

● Usually, the dimension of any physical quantity is represented by the combination of [M], [L] and

[T] and the power of each quantity denotes the dimension of that quantity.

● Dimensional analysis is useful in finding the relationship between physical quantities, to check

the accuracy of the formula and to find the units of unknown physical quantities.

PRACTICE QUESTIONS

1.If force (F) is expressed as a function of mass

(m), length (L), and time (T), what is its

dimensional formula?

a) [M L T-1] b) [M L T-2]

c) [M L2 T-2] d) [M2 L T-2]

2.Which of the following physical quantities is

dimensionless?

a) Refractive index b) Electric charge

c) Magnetic flux d) Thermal conductivity

3.If the velocity (v) of a particle is given by the

equation 𝐯 = √
𝟐𝐄

𝐦
, where E is energy and m is 

mass, what are the dimensions of E? 

a) [M L2 T-2] b) [M L T-2]

c) [M2 L2 T-3] d) [M L2 T-3]

4.The dimensions of Planck's constant (h) are:

a) [M L2 T-1] b) [M L T-1]

c) [M2 L T-2] d) [M L2 T-2]

5.Which of the following pairs have the same

dimensions?

a) Work and Power

b) Force and Pressure

c) Energy and Work

d) Momentum and Force

6.In the equation 𝐲 = 𝐚 𝐬𝐢𝐧(𝛚𝐭 + 𝐤𝐱), where y is

displacement, t is time, and x is position, what

are the dimensions of ω (angular frequency)?

a) [T-1] b) [L T-1]

c) [L-1] d) [M T-2]

7.The Buckingham π theorem is used in

dimensional analysis to:

a) Convert units from one system to another

b) Determine the dimensions of a physical quantity

c) Reduce the number of variables in a physical problem

d) Find the exact numerical value of physical quantities

8.The dimensional formula for kinematic

viscosity is:

a) [M L-1 T-1] b) [L2 T-1]

c) [M L T-2] d) [L T-2]

9.If the period of a simple pendulum is given by

𝐓 = 𝟐𝛑√
𝐋

𝐠
, where L is the length and g is the 
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acceleration due to gravity, what is the 

dimensional formula for T? 

a) [L T-1] b) [M0 L1 T-2]

c) [T1] d) [L T2]

10.Which of the following is a correct statement

about dimensional homogeneity?

a) All equations must have the same dimensions on

both sides

b) Dimensions can be added or subtracted

c) Dimensionless constants affect dimensional analysis

d) Dimensions are only applicable to fundamental

quantities

11.The dimensions of magnetic field intensity (H)

are:

a) [M T-2 A-1] b) [M L T-2 A-1]

c) [M L-1 T-2 A-1] d) [L-1 T-1A]

12.The ratio of two quantities with the same

dimensions is:

a) A scalar b) A vector

c) A dimensionless quantity d) A unit quantity

13.Dimensional analysis can be used to derive:

a) Numerical values of constants

b) Functional forms of physical laws

c) Exact solutions to differential equations

d) Empirical formulas for complex phenomena

14.The dimensions of electric field intensity (E)

are:

a) [M L T-3 A-1] b) [M L2 T-3 A-1]

c) [M L T-2 A-1] d) [M L2 T-2 A-1]

15.The dimensional formula of thermal 

resistance is: 

a) [M L T-1θ-1] b) [M L2 T-2 θ-1]

c) [M L2 T-3 θ-1] d) [M0 L0 T0 θ-1]

Ans: 1-b,2-a,3-a,4-a,5-c,6-a,7-c,8-b,9-c,10-a,11-d,12-c,13-b,14-a,15-d. 



 3. SIGNIFICANT FIGURES

Significant figures (sig figs) are the digits in a measurement that provide useful information about its 
precision. These statistics are crucial in scientific computations because they represent the accuracy of 
the measurements used. 
The following rules must be remembered while determining the number of significant figures. 

1. All non-zero digits are significant:
Any digit from 1 to 9 is considered significant. For example, in the number 1342, all digits are non-
zero, so it has four significant figures.

2. All zeros between two non-zero digits are significant:
Zeros that appear between non-zero digits are significant. For example, 2008 has four significant
figures because the zeros are between 2 and 8.

3. All zeros to the right of a non-zero digit but to the left of a decimal point are significant:
Zeros that come after a non-zero digit but before the decimal point are considered significant. For
example, 30700. has five significant figures because of the trailing zeros before the decimal.

4. For numbers without a decimal point, terminal or trailing zeros are not significant:
When there’s no decimal point, trailing zeros are not counted as significant. For example, 30700 has
only three significant figures because the zeros are not counted.

5. For numbers less than 1, zeros to the right of the decimal point but to the left of the first
non-zero digit are not significant:

Leading zeros in decimal numbers are not significant. For example, 0.00345 has three significant 
figures because the zeros before 3 are not significant. 

6. All zeros to the right of a decimal point and to the right of a non-zero digit are
significant:

In decimal numbers, zeros to the right of the decimal and after a non-zero digit are significant. For 
example, 40.00 has four significant figures, and 0.030400 has five significant figures. 

7. The number of significant figures does not depend on the system of units used:
The number of significant figures is the same regardless of the units in which the measurement is
expressed. For example, 1.53 cm, 0.0153 m, and 0.0000153 km each have three significant figures.

Notes: 
Multiplying or dividing exact numbers: Multiplication or division by exact numbers (like 2 in the 
formula for circumference, S = 2πr) does not affect the significant figures, as these are considered to 
have infinite significant figures. 

Power of 10 does not affect significant figures: The exponent in scientific notation does not 
influence the significant figures. For example, 5.70m, 5.70 × 102cm, and 5.70 × 103mm all have three 
significant figures. 

Rounding off 
Rounding off means dropping of unwanted/ insignificant figures. Rounding off significant figures is a 
crucial process in maintaining the correct precision in your calculations and results. Problem: Round off 
3.84 to two significant figures. 
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Here, there are three significant figures and in order to round off, 4 in 3.84 is considered to be 
insignificant and is dropped off.  However, some of the rules has to be followed while dropping off digits. 
If the digit to be dropped is smaller than 5, then the preceding digit should be left unchanged: 

• When rounding, if the digit being dropped (after the decimal or in the units place) is less than 5, 
the preceding digit remains the same. 

• Example i: 7.32 is rounded off to 7.3 because the digit 2 (to be dropped) is smaller than 5. 
• Example ii: 8.94 is rounded off to 8.9 because the digit 4 (to be dropped) is smaller than 5. 

 

If the digit to be dropped is greater than 5, then the preceding digit should be increased by 1: 
• If the digit being dropped is greater than 5, the preceding digit is increased by 1. 
• Example i: 17.26 is rounded off to 17.3 because the digit 6 (to be dropped) is greater than 5. 
• Example ii: 11.89 is rounded off to 11.9 because the digit 9 (to be dropped) is greater than 5. 

 

If the digit to be dropped is 5 followed by digits other than zero, then the preceding digit 
should be raised by 1: 

• If the digit to be dropped is 5 and is followed by non-zero digits, the preceding digit should be 
raised by 1. 

• Example i: 7.352, when rounded off to the first decimal, becomes 7.4 because the digit 5 (to be 
dropped) is followed by 2, a non-zero digit. 

• Example ii: 18.159, when rounded off to the first decimal, becomes 18.2 because the digit 5 (to 
be dropped) is followed by 1, a non-zero digit. 

 

If the digit to be dropped is 5 or 5 followed by zeros, then the preceding digit is not changed 
if it is even: 

• If the digit being dropped is 5 (or 5 followed by zeros) and the preceding digit is even, the 
preceding digit remains unchanged. 

• Example i: 3.45 is rounded off to 3.4 because the digit 5 (to be dropped) is preceded by an even 
digit, 4. 

• Example ii: 8.250 is rounded off to 8.2 because the digit 5 (to be dropped) is preceded by an 
even digit, 2. 

 

If the digit to be dropped is 5 or 5 followed by zeros, then the preceding digit is raised by 1 if 
it is odd: 

• If the digit being dropped is 5 (or 5 followed by zeros) and the preceding digit is odd, the 
preceding digit is increased by 1. 

• Example i: 3.35 is rounded off to 3.4 because the digit 5 (to be dropped) is preceded by an odd 
digit, 3. 

• Example ii: 8.350 is rounded off to 8.4 because the digit 5 (to be dropped) is preceded by an odd 
digit, 3. 

 

Rounding off in arithmetic operations: 
The significant figures in the result obtained after multiplication and division should not be more than 
the significant figures of the original numbers.  Example while dividing 4.237 by 2.51, the result should 
have same significant figures as that of the number with least significant figures (that is 2.51).  Otherwise, 
the result must be round off.  Thus, the result would be 1.69.  This is the case for multiplication as well.  

 

But in the case of addition and subtraction, the result should have same number of decimal places as 
that of the original value. Example while adding 22.84, 32.304 and 30.314, the result obtained will be 
85.458.  The addend 22.84 is correct to two decimal places but the result is corrected to 3 decimal places.   
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It will be contradictory when the result is more precise than the given value.  Thus, 85.458 must be round 
off to 4 significant figures and the answer becomes 85.46.  This is the case for subtraction as well. 
 

Come, Let’s Solve this Like a Pro! 
1. Add 5.67+12.3+0.004 and express the 
result with the correct number of 
significant figures. 
a)17.974    b) 17.97  
c) 17.9   d) 18.0 
Answer: d) 18.0 
Solution:  
First, we add: 5.67+12.3+0.004=17.974. Since 
the number with the least number of decimal 
places is 12.3 (1 decimal place), we round the 
result to 1 decimal place  

2. Express the result of the product 
4.56×3.2 with the correct number of 
significant figures. 
a)14.592   b) 14.59  
c) 14.5   d) 15 
Answer: d) 15 
Solution:  
4.56×3.2=14.592.  Since the number with the 
least significant figures is 3.2 (2 significant 
figures), we round the result to 2 significant 
figures. 

 

Points to remember: 
● All non-zero digits are significant. 
● All zeros trapped between two non-zero digits are significant.  
● The ending zeros are not significant if there are no decimal points. 
● The zeros that are placed after the decimal point are significant. 
● Zeros before and after decimal point are not significant.  
● Number of significant figures should not get changed while changing the units. 
● While rounding off, if the insignificant number is less than 5, then it can be dropped.  
● While rounding off, if the insignificant number is greater than 5, then preceding digit is increased 

by 1. 
● While rounding off, if the insignificant number is exactly 5, then check the preceding digit. If it is 

even, then insignificant digit is dropped and if it is odd then preceding digit is increased by 1. 
● The significant figures in the result obtained after multiplication and division should not be more 

than the significant figures of the original numbers.   
● In the case of addition and subtraction, the result should have same number of decimal places as 

that of the original value. 
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PRACTICE QUESTIONS 
1. How many significant figures are there in the 
number 0.004560? 
a) 3  b) 4  c) 5  d) 6 
 

2. Which of the following numbers has 4 
significant figures? 
a) 0.0405   b) 2.500 
c) 3000    d) 123.45 
 

3. In the number 7.030, how many significant 
figures are there? 
a) 2  b) 3  c) 4  d) 5 
 

4. When multiplying 6.38 by 2.0, how many 
significant figures should the result have? 
a) 1  b) 2  c) 3  d) 4 
 

5. Which of the following measurements is 
correctly rounded to three significant figures? 
a) 4.0071 → 4.01  b) 0.00345 → 0.0034 
c) 78.95 → 79.0  d) 5001 → 500 
 

6. What is the result of 8.59 + 3.41 rounded to the 
correct number of significant figures? 
a) 11.9  b) 12.0  c) 12  d) 11.90 
 

7. Which of the following correctly expresses 
0.000620 in scientific notation with the 
appropriate number of significant figures? 
a) 6.2 × 10-4   b) 6.20 × 10-4 
c) 62 × 10-5   d) 0.62 × 10-3 
 

8. The number 1500 has how many significant 
figures? 
a) 2    b) 3  
c) 4    d) Ambiguous 
 

9. How many significant figures are in the 
measurement 0.0520 m? 
a) 2  b) 3  c) 4  d) 5 
 

10. If you multiply 4.56 by 0.030, how many 
significant figures should your answer have? 
a) 1  b) 2  c) 3  d) 4 
 

11. What is the correct number of significant 
figures in the sum of 12.11 + 0.22 + 3.1? 
a) 2  b) 3  c) 4  d) 5 
 

12. The product of 2.50 and 3.40 should be 
reported with how many significant figures? 
a) 1   b) 2   c) 3  d) 4 
 

13. Which of the following numbers does not have 
5 significant figures? 
a) 0.003205   b) 12300 
c) 500.00   d) 205.30 
 

14. When dividing 56.4 by 1.23, to how many 
significant figures should the result be rounded? 
a) 2  b) 3  c) 4  d) 5 
 

15. What is the number of significant figures in 
0.00670? 
a) 2  b) 3  c) 4  d) 5 

 
 
 
 

Ans: 1-b,2-b,3-c,4-b,5-c,6-a,7-b,8-d,9-b,10-b,11-b,12-c,13-b,14-b,15-b 
 



4. PRECISION AND ACCURACY 
 
Precision and accuracy are the terms used to describe the quality of measurements or results, but they 
refer to different aspects: 

 

1. Precision 
Precision refers to the degree to which repeated measurements under the same conditions yield the 
same results. A measurement is precise if there is little variation or spread in repeated measurements. 

● High Precision: If a set of measurements is close to each other but not necessarily close to the 
true value, the measurements are considered precise. 

● Low Precision: If the measurements vary significantly from each other, they are considered 
imprecise. 

 

Example: If you measure the length (originally 4 cm) of an object several times and get values like 5.01 
cm, 5.00 cm, and 5.02 cm, the measurements are precise because they are very close to each other, 
even if they are not necessarily the true value. 
Note: The formula for precision is context-dependent. The following are some popular precision 
formulas and interpretations: 
 

Precision in Statistics 
Precision is often quantified by the standard deviation or variance of repeated measurements. 

Precision = True Value
Measured value range

 

Where: 
Alternatively, precision can be expressed as: Precision = 1/Standard Deviation 
Higher precision implies lower standard deviation (values are closer together). 
 

Precision in Information Retrieval  
In machine learning or classification tasks, precision evaluates the proportion of true positive 
predictions out of all positive predictions: 

Precision = Truepositives(TP)
True Positives (TP)+False Positives (FP) 

Where: 
● True Positives (TP) = Correctly predicted positive cases. 
● False Positives (FP) = Incorrectly predicted positive cases. 

 

Instrument Precision  
Precision in instrumentation or measurement systems is typically represented by the repeatability of 
measurements and can be calculated using the coefficient of variation (CV): 

CV= σ
μ
×100 

Where: 
● σ = Standard deviation of the measurements. 
● μ = Mean of the measurements. 

 

Ways to Improve Precision of Measurement: 
• Use High-Resolution Instruments: Select instruments with finer scales or higher sensitivity to detect 

small variations. 
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• Control Environmental Conditions: Maintain stable conditions such as temperature, humidity, and 
pressure to reduce variability. Eliminate vibrations, electromagnetic interference, or other 
disturbances. 

 

• Standardize Measurement Procedures: Use consistent methods and techniques during data 
collection. Follow a strict protocol to avoid variations in handling or measurement setup. 

 

• Reduce Random Errors: Repeat measurements multiple times and average the results. Identify and 
minimize sources of random variability, such as operator differences or transient conditions. 

 

• Ensure Instrument Stability: Regularly calibrate instruments to avoid drift. Use tools designed for 
long-term stability and repeatability. 

 

• Use Proper Sampling Techniques: Collect representative and evenly distributed samples. Avoid 
biased sampling methods that introduce variability. 

 

• Minimize Human Errors: Train operators thoroughly in using instruments and following 
procedures. Use automated systems where feasible to reduce subjective errors. 

 

• Increase Sample Size: Perform more measurements to minimize the influence of random outliers. 
Larger datasets often result in more consistent results. 

 

• Optimize Instrument Setup: Use appropriate settings, such as correct range or mode for the 
measurement. Ensure sensors and probes are properly positioned and secured. 

 

• Use High-Quality Reference Standards: Compare measurements to well-defined and traceable 
reference standards to maintain consistency. 

 

• Apply Statistical Analysis: Use techniques like variance analysis to identify and address sources of 
imprecision. Eliminate or account for outliers in datasets. 

By focusing on these strategies, one can enhance the repeatability and reliability of your measurements, 
leading to higher precision. 

 

2. Accuracy 
Accuracy refers to how close a measurement is to the true value or the accepted reference value. A 
measurement is accurate if it is close to the true value, regardless of how variable the repeated 
measurements are. 

● High Accuracy: The measurement is close to the true value. 
● Low Accuracy: The measurement is far from the true value. 

A single measurement can be evaluated for accuracy, or the average of multiple measurements can be 
compared to the true value.  Accuracy can be expressed as the percentage of error or deviation:  

Accuracy (%)=�1 − error
true value

�x100 

Error = Measured value − True value. 
 

Example: If the true length of an object is known to be 5.00 cm, and you measure it to be 5.01 cm, the 
measurement is accurate because it is close to the true value. 
 

To improve accuracy of measurement: 
• Calibrate Instruments: To achieve accurate readings, calibrate equipment on a regular basis with 

established references.  
• Use High-Quality Equipment: Choose instruments with the proper sensitivity and resolution for 

your measurements.  
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• Minimize systematic errors: Identify and eliminate sources of bias (such as environmental 
influences or defects in equipment). Apply corrections for known and unavoidable biases.   

• Standardize procedures: To reduce variability, measure using consistent and verified 
methodologies.  

• Control Environmental Factors: Maintain steady conditions (temperature, humidity, and vibration). 
Reduce extraneous influences, such as electromagnetic interference. 

• Train operators: Provide comprehensive training on how to operate equipment correctly. 
Standardize data gathering processes for all personnel. Validate and cross-check results. 
Compare the results to known standards or reference methods. 
Perform cross-validation with multiple instruments or approaches.  

• Increase measurement repetition: To eliminate random mistakes, take numerous measurements 
and average the results. 

 

Relationship Between Precision and Accuracy 
High precision, high accuracy: Measurements are both close to each other and close to the true 
value. This is ideal. 
 

High precision, low accuracy: Measurements are close to each other but not close to the true value. 
This indicates a consistent systematic error. 
 

Low precision, high accuracy: Measurements are spread out but on average close to the true value. 
This may indicate random errors but no systematic bias. 
 

Low precision, low accuracy: Measurements are both spread out and far from the true value. This is 
undesirable and suggests both random and systematic errors. 
 

The following figure of bullets hitting the target plates explains the concept of accuracy and precision. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Come, Let’s Enter Precision Practice Hub 
1. Suppose the true value of a length is 5.00 cm, 
and we measure it several times with the 
following results:  
Trial 1: 5.01 cm, Trial 2: 5.02 cm, Trial 3: 5.00 cm 

Identify whether the results are precise or accurate. 
a) Measurements are precise and not accurate  
b) Measurements are accurate and not precise  
c) Measurements are precise and accurate  
d) Measurements are neither accurate nor precise 
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Answer: Option c  
Solution: 
c) The measurements are precise because they are 
very close to each other. The measurements are 
also accurate because they are close to the true 
value of 5.00 cm. 
2. Given measurements of a liquid's volume: 
25.4 mL, 25 mL, 25.5 mL, 25.6 mL  
Which measurement has larger deviation? 
a) 25.4 mL    b) 25 mL  

c) 25.5 mL    d) 25.6 mL 
Answer: b) 25 mL 
Solution:  
Mean=Sum of measurements/Number of measure
ments= (25.4+25+25.5+25.6)/4=25.375 mL 
Deviation=Measured Value−Mean 

● For 25.4; 25.4−25.375=0.025 
● For 25: 25−25.375=0.375 (Larger Deviation) 
● For 25.5: 25.5−25.375=0.125 
● For 25.6: 25.6−25.375=0.225

 
 
 

PRACTICE QUESTIONS 
1. Which of the following best describes 
accuracy? 
a) The closeness of a measurement to the true value 
b) The consistency of repeated measurements 
c) The number of significant figures in a measurement 
d) The range of possible values in a measurement 
 

2. Precision is best defined as: 
a) The closeness of a measurement to the true value 
b) The consistency of repeated measurements 
c) The smallest unit of measurement 
d) The ability to measure something accurately 
 

3. If a set of measurements are very close to 
each other but far from the true value, they are: 
a) Accurate but not precise 
b) Precise but not accurate 
c) Both accurate and precise 
d) Neither accurate nor precise 
 

4. Which of the following represents high 
precision and high accuracy? 
a) Measurements that are clustered together and close 
to the true value 
b) Measurements that are scattered and far from the 
true value 
c) Measurements that are clustered together but far 
from the true value 
d) Measurements that are scattered but close to the 
true value 
 

5. An instrument that gives the same reading 
every time for the same quantity is said to be: 
a) Accurate 
b) Precise 
c) Both accurate and precise 
d) Neither accurate nor precise 
 

6. If an archer hits the same spot on a target 
every time but that spot is not the bullseye, their 
shots are: 
a) Accurate but not precise 
b) Precise but not accurate 
c) Both accurate and precise 
d) Neither accurate nor precise 
 

7. Which of the following is true about 
systematic errors? 
a) They affect the precision of measurements 
b) They affect the accuracy of measurements 
c) They occur randomly and unpredictably 
d) They cannot be corrected by calibration 
 

8. Random errors primarily affect: 
a) Accuracy 
b) Precision 
c) Both accuracy and precision 
d) Neither accuracy nor precision 
 

9. An accurate instrument must: 
a) Have a high degree of precision 
b) Always give the true value of the measured quantity 
c) Give measurements that are close to the true value 
on average 
d) Have no systematic errors 
 

10. Which of the following can improve the 
precision of measurements? 
a) Calibrating the instrument 
b) Taking multiple measurements and averaging them 
c) Using a more accurate instrument 
d) Reducing systematic errors 
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11. If the mean of a large number of 
measurements is close to the true value, the 
measurements are considered: 
a) Precise but not accurate 
b) Accurate but not precise 
c) Both accurate and precise 
d) Neither accurate nor precise 
 

12. Systematic errors can be minimized by: 
a) Increasing the number of measurements 
b) Using instruments with higher precision 
c) Proper calibration and maintenance of instruments 
d) Using the average of multiple measurements 
 

13. A laboratory scale gives a reading of 100.05 g 
for a standard weight of 100 g each time it is 
used. The scale is: 
a) Accurate but not precise 
b) Precise but not accurate 
c) Both accurate and precise 
d) Neither accurate nor precise 
 

14. Which of the following is an example of a 
random error? 
a) A mis calibrated scale consistently giving readings 
that are too high 
b) Fluctuations in temperature affecting measurement 
readings 
c) A clock that runs slow by 5 minutes every hour 
d) A voltmeter that always reads 0.2 V too high 
 

15. An experiment with measurements that have 
both high accuracy and high precision will result 
in: 
a) Values that are close to the true value but widely 
scattered 
b) Values that are close to each other but far from the 
true value 
c) Values that are close to the true value and closely 
clustered 
d) Values that are widely scattered and far from the 
true value 

 
 Ans: 1-a,2-b,3-b,4-a,5-b,6-b,7-b,8-b,9-c,10-b,11-b,12-c,13-b,14-b,15-c. 



5. ERROR ANALYSIS 
 

Introduction to Error Estimation 
Science relies on experiments and measurements to confirm or challenge theories and hypotheses. 
However, measurements alone are not meaningful without addressing the processes involved and their 
associated uncertainties or errors. In this context, "error" doesn't refer to mistakes but rather to an 
estimate of the measurement's precision. Estimating errors in experimental results is crucial before 
making any conclusions. 
 

When reporting results, it is standard practice to include both the measured value and its uncertainty. 
For instance, if the measured time is reported as (6.5 ± 0.2) seconds, it indicates that the time is 6.5 
seconds with an uncertainty of 0.2 seconds, meaning the time could range between 6.3 and 6.7 seconds. 
The magnitude of both the measured value and its uncertainty depends on the measurement tool and 
the method used. To demonstrate this, we will define significant figures and uncertainty using an 
example. 

 
 

 
 
 
 
 
 

Imagine three rulers, A, B, and C, each with different scales, are used to measure the lengths of three 
lines (1, 2, and 3) in Figure 1. These rulers, as different measurement tools, yield varying results even 
when measuring the same object, due to differences in significant figures and uncertainties. Let's explore 
why this happens. 

 

Significant Figures and Uncertainty 
The numbers derived from measurements are imprecise and subject to error. The precision of a 
measurement is represented by significant figures, which include all the digits that are directly obtained 
from the measurement. For example, rulers A, B, and C may measure line 1 as 3, 3.3, and 3.35 cm, 
respectively, corresponding to 1, 2, and 3 significant figures. More significant figures indicate greater 
precision, so 3.35 cm (with 3 significant figures) is more accurate than 3 cm (with only 1 significant 
figure). The number of significant figures is independent of the magnitude of the value. For example, 
1234, 12.34, and 1.234 all have four significant figures, despite varying magnitudes. 
 

However, the presence of zeros in measurements requires special attention. There are three types of 
zeros to consider: leading zeros, trailing zeros, and captive zeros. Leading zeros (e.g., 0.3 or 0.0023) are 
not significant, as they only serve to position the decimal point. Trailing zeros in a number with a decimal 
point (e.g., 4500.0) are considered significant, while those without a decimal point (e.g., 4500) are not. 
Captive zeros, which are between non-zero digits (e.g., 1203.5 or 2.034), are always significant. 
 

To determine significant figures in numbers with zeros, follow these guidelines: 
•  Leading zeros are not counted. 
•  Trailing zeros are significant if a decimal point is present. 
•  Captive zeros are always significant. 

 

For instance, the number 5.294, 0.0003503, and 3.750 × 10⁷ all have four significant figures. 
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Scientific notation can also simplify the determination of significant figures. For example, writing 13000 
as 1.3 × 10⁴ makes it clear that it has 2 significant figures. Similarly, 0.00034 written as 3.4 × 10⁻⁴ also 
has 2 significant figures. 
 

Measurement Examples: 
When measuring line 1, using ruler A (with the least precision), the result might be 3 ± 1 cm (1 significant 
figure), meaning the length is between 2 and 4 cm. Using ruler B (with finer resolution), the result could 
be 3.3 ± 0.5 cm (2 significant figures), with the length ranging from 2.8 to 3.8 cm. Finally, with ruler C 
(with the highest precision), the measurement would be 3.35 ± 0.05 cm (3 significant figures), yielding 
a range of 3.3 to 3.4 cm. 
 

Clearly, the choice of measurement tool affects both the measured value and the uncertainty. More 
precise instruments yield more significant figures and smaller uncertainties. Therefore, it is beneficial to 
use tools with higher precision, though they tend to be more expensive. 
For lines 2 and 3, the measurements would be consistent with the respective rulers' resolutions. For 
instance, line 2 might be measured as 6 ± 1 cm (1 significant figure), 6.5 ± 0.5 cm (2 significant figures), 
or 6.50 ± 0.05 cm (3 significant figures). Similarly, line 3 might be measured as 9 ± 1 cm, 9.0 ± 0.5 cm, 
or 9.00 ± 0.05 cm. 
 

Consistency Between Significant Figures and Uncertainty 
It's important that the number of significant figures in a measurement matches the uncertainty. For 
example, (21.2 ± 0.2) is valid, but (21.23556 ± 0.2) is not, as the error term has fewer significant figures 
than the measurement itself. In general, uncertainty should only have one or two digits, and anything 
more is not acceptable. Therefore, uncertainties like ± 0.3 or ± 0.12 are fine, but ± 0.342 or ± 0.005632 
are not. 
 

Mathematical Operations with Significant Figures 
When adding or subtracting measurements, the result should be rounded to the least number of decimal 
places among the numbers involved. For example, (4.5 ± 0.1) cm and (0.3352 ± 0.0002) cm should be 
summed as 4.8 cm (rounding to 1 decimal place). Similarly, for multiplication and division, the result 
should have the same number of significant figures as the number with the least significant figures in the 
calculation. 
 

When performing mixed operations, it’s essential to follow the correct order of operations: parentheses, 
exponents, multiplication and division, and finally, addition and subtraction. 
For transcendental functions like trigonometric or logarithmic functions, determining significant figures 
can be more complicated, but some guidelines are available. The significant figures of a function depend 
on the number of significant figures in the input value and the magnitude of the result. For example, 
cos(1.3 rad) = 0.26749… should be reported as 0.27, as 2 significant figures are sufficient to distinguish 
the change in the value. 
 

Scale Uncertainties in Analog and Digital instruments 
Analog Instruments 

Analog instruments like rulers and needle meters rely on visual 
inspection of the scale markings to estimate measurements. The 
uncertainty is typically determined by the smallest division on the 
scale and is often estimated to be half of the smallest scale division. 
For example, if you measure a length with an analog ruler and get a 
reading of 6.65 cm, the uncertainty might be ±0.05 cm. If a magnifier 
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is used, the reading could be more precise, such as 6.63 ± 0.04 cm, but it still depends on how carefully 
the observer reads the scale. 

 

Digital Instruments 
Digital instruments, such as multimeters, 
display measurements directly as 
numerical values. These instruments 
often provide a clearer and more precise 
way to report uncertainty like in figure 4. 

For example, Like in figure 5, if a digital 
multimeter reads a direct current of 0.320 A, 
the uncertainty is determined based on the 
smallest measurable change. In this case, the 
uncertainty is ±0.005 A, so the reading is 
reported as (0.320 ± 0.005) A  

If the reading fluctuates between 0.32, 
0.33, and 0.34 A, the uncertainty would be 
±0.015 A, and the result would be reported 
as (0.33 ± 0.01) A. If the reading fluctuates 

too much, the uncertainty may be reported as a larger range, such as (0.35 ± 0.05) A. 
 

Estimating Uncertainty in Digital Instruments 
In addition to visual inspection of the reading, the specifications of digital instruments can be used to 
estimate uncertainty.  
 

Function Range Resolution Accuracy 

Resistance 

200 Ω 0.01 Ω ±(2% + 5 digits) 
2 kΩ 0.1 Ω ±(0.2% + 2 digits) 
20 kΩ 1 Ω ±(0.2% + 2 digits) 
200 kΩ 10 Ω ±(0.2% + 2 digits) 
2000 kΩ 100 Ω ±(0.5% + 2 digits) 
20 MΩ 1 kΩ ±(0.5% + 2 digits) 
200 mV 10 μV ±(0.1% + 4 digits) 

DC Voltage 

2 V 100 μV ±(0.1% + 4 digits) 
20 V 1 mV ±(0.1% + 4 digits) 
200 V 10 mV ±(0.1% + 4 digits) 
1000 V 100 mV ±(0.15% + 4 digits) 

DC Current 

2 mA 0.1 μA ±(0.5% + 1 digit) 
20 mA 1 μA ±(0.5% + 1 digit) 
200 mA 10 μA ±(0.5% + 1 digit) 

2000 mA 100 μA ±(0.5% + 1 digit) 
10 A 1 mA ±(0.75% + 3 digits) 

AC Voltage (45 Hz – 1 kHz) 

   
200 mV 10 μV ±(0.5% + 20 digits) 

2 V 100 μV ±(0.5% + 20 digits) 
20 V 1 mV ±(0.5% + 20 digits) 
200 V 10 mV ±(0.5% + 20 digits) 
750 V 100 mV ±(1% + 20 digits) 
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For example, a multimeter might provide a range of uncertainties depending on the function (resistance, 
DC voltage, etc.) and the measurement range. A resistance measurement on a 200 Ω scale with a 
resolution of 0.01 Ω might show a reading of 71.49 Ω, and the uncertainty can be calculated as 71.49 × 
2% (from the accuracy specification) + 5 dgt (from the resolution), which gives an uncertainty of ±1.48 
Ω. Similarly, DC voltage and AC voltage measurements would have uncertainties calculated based on 
their respective specifications. 

 

Important Points: 
•  Analog Instruments: Scale uncertainty is usually half of the smallest scale division. Accuracy 

depends on the observer's care and precision of the instrument. 
 

•  Digital Instruments: Uncertainty is based on the smallest possible change in the displayed 
reading. This is often more precise and can be determined using the device's specifications. 

 

•  Specifications: Manufacturers' specifications provide a way to calculate uncertainty by 
considering the resolution and accuracy for different ranges of measurements. 

 

Sources of Errors 
Errors in measurements can arise from three primary sources: the instrument, the method of 
measurement, and the observed quantity itself. Typically, the largest source of error determines the 
uncertainty in the data. There are two main types of uncertainty: statistical (random) errors and 
systematic errors. 
 

Statistical (Random) Errors: These errors arise from unpredictable factors that cause fluctuations in 
measurements. For instance, if a mechanical stopwatch is aging, it may malfunction, causing the second 
hand to move either faster or slower at random intervals. This randomness in its movement makes the 
timing uncertainty unpredictable. When measurements are repeated, the values will vary and exhibit a 
spread around the average value. This spread is known as random uncertainty. In the following sections, 
you'll learn that random errors can be estimated and minimized through repeated measurements. 
 

Systematic Errors: These errors cause a consistent bias in one direction, making the measured value 
either consistently higher or lower than the true value. Systematic errors are often difficult to quantify. 
For example, if a stopwatch is incorrectly set 5 seconds fast, every measurement will be consistently 5 
seconds ahead. This error is not random, and it will persist unless the instrument is corrected. If the 
stopwatch is lent to someone else without explaining the error, they will unknowingly experience the 
same 5-second discrepancy. The only way to detect this error is by comparing the stopwatch with 
another accurate timer. 
 

Another example of a systematic error could occur when using a metal meter stick to measure the length 
of a table. If the meter stick has contracted due to a change in temperature, it will always measure the 
table as longer than it actually is, regardless of how carefully the measurement is taken. This systematic 
error is due to the instrument's material properties being affected by environmental factors (e.g., 
temperature). 
 

Systematic errors are typically caused by imperfections in the equipment, biased observations, or 
unaccounted physical effects. Depending on the measurement conditions, an instrument may introduce 
random errors in some situations and systematic errors in others, or even both at the same time. Thus, 
it is crucial to identify the source of errors to take appropriate action, such as reducing or estimating the 
errors. 
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For instance, in the “Example of Error Analysis” in Appendix A, a free-fall experiment to determine 
gravitational acceleration (g) uses a stopwatch to measure the time it takes for a ball to fall from a height. 
The uncertainty in timing is partly due to human reaction time in starting and stopping the stopwatch, 
which is a random error. Repeated measurements will yield times that are distributed randomly around 
the true value. On the other hand, air resistance always increases the travel time of the ball, making it a 
systematic error that consistently affects the results in the same direction. 
 

Statistical (Random) Errors and How to Estimate Them? 
Random errors vary with each repetition of a measurement. These fluctuations or instabilities may stem 
from the observed phenomenon, the measuring instrument, or even the experimenter's actions, and they 
are beyond our control. Random errors can be minimized by performing repeated measurements. By 
repeating an experiment many times, we can reduce the impact of random errors and, at the same time, 
estimate the "true" value of the measurement and its uncertainty. 
 

Statistics provide a powerful method for estimating the magnitude of random errors. When an 
experiment is repeated several times, the resulting measurements, due to random fluctuations, will form 
a distribution. This distribution depends on various factors, including the phenomenon being studied and 
the measurement tools used. Two key distributions often encountered are the Gaussian and Poisson 
distributions. 
 

The Gaussian distribution applies to measured quantities that have a continuous range of possible 
values. For example, the length of a table or the gravitational acceleration g are typically described by a 
Gaussian distribution because values such as 43.232 cm, 43.345 cm, or 43.653 cm for the table's length, 
or 9.818 m/s², 9.806 m/s², or 9.823 m/s² for gravitational acceleration, are continuous measurements. 
 

On the other hand, the Poisson distribution applies to scenarios where only discrete outcomes are 
possible. For example, counting the number of vehicles passing by in a minute or counting the number 
of gamma particles emitted from a radioactive source in 30 seconds are examples of processes that 
follow a Poisson distribution. In these cases, the number of particles or vehicles counted can be 41 or 
42, but never a non-integer value like 41.3744. These measurements are discrete and countable. 
 

Gaussian Distribution 
Background of Gaussian Distribution 
Imagine you are tasked with determining the gravitational acceleration g and you repeat the experiment 
n times, obtaining values g1,  g2,  … ,  gn. You can then group the measured values into ranges and plot 
the frequency of occurrences in a histogram, as shown in Figure 8. This frequency represents the 
probability of obtaining a particular measured value, normalized by the total number of events. 
In this case, the distribution of measurements follows a Gaussian distribution, which can be expressed 
as: 

f(x) =
1

σ√2π
e−

(x−μ)2
2σ2  

where μ is the mean (or expected value) and σ is the standard deviation, as illustrated in Figure 9. The 
term f(x) dx represents the probability that a measurement will produce a value of x within the interval 
x to x + dx. Since the sum of all possible measurements must equal 1, we have the equation: 

� f(x)
∞

−∞
 dx = 1 

For continuous random variables, the expected value and variance are defined as: 

⟨x⟩ = � x
∞

−∞
f(x) dx⟨x⟩ 
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and 

⟨(x − μ)2⟩ = � (x − μ)2f(x)
∞

−∞
 dx 

The mean value μ and the standard deviation σ can be calculated from the measurements as: 

μ =
1
n
� xi

n

i=1

 

and 

σ2 =
1

n − 1
�(xi − μ)2
n

i=1

 

 

Note that the sample standard deviation is used here instead of the population standard deviation 
because the experiment is considered a finite sample, not the entire population. Therefore, a correction 
factor is applied by using n − 1 in the denominator instead of n. 
The Gaussian distribution reaches its maximum at x=μ, and this maximum value is: 

f(μ) =
1

σ√2π
 

 

The distribution decreases as x moves away from μ. For values of x one standard deviation away from 
the mean, i.e., x = μ ± σ , the value of the probability density function drops by a factor of approximately 
0.606531. For x = μ ± 2σ , the value drops by a factor of approximately 0.135335. The width of the 
Gaussian distribution is characterized by the Full Width at Half Maximum (FWHM), which 
represents the width of the distribution at the point where the value has decreased to half of its maximum. 
The relationship between the FWHM and the standard deviation is given by: 

FWHM = 2√2 ln 2  σ ≈ 2.3548  
To determine the probability that a measured value x falls within a certain range, we can compute the 
probabilities for specific intervals. For example, the probability that x lies within one standard deviation 
of the mean is: 

P(μ − σ ≤ x ≤ μ + σ) = 0.682 
This indicates    that there is a 68% chance that a measurement will fall within μ ± σ . Similarly, the 
probability that x lies within two standard deviations of the mean is: 

 P(μ − 2σ ≤ x ≤ μ + 2σ) = 0.954 
This means there is a 95% chance that a measurement will fall within μ ± 2σ . Therefore, the standard 
deviation σ provides a measure of the uncertainty associated with a single measurement. 
 

Estimation of Measured Value and Its Uncertainty 
When repeated measurements follow a Gaussian distribution, the "true" value of the measurement is 
represented by the mean value, and the uncertainty can be determined from the distribution of those 
measured values. A common question arises: Can we express the result as x ± σ for repeated 
measurements? The answer is no. 
 

Although σ describes the spread of individual measurements, it does not represent the uncertainty of the 
mean value. To express the uncertainty of the mean correctly, we need to introduce the concept of 
standard error. 
 

If we conduct n repeated measurements at different times, and each measurement gives a value x1 ±
σ1, x2 ± σ2, … , xn ± σn, the uncertainty of the mean (also known as the standard error) can be calculated 
using the following formula: 
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δx =
σ
√n

 

where σ is the standard deviation of the individual measurements. The measured result of repeated 
measurements is then expressed as: 

x ± δx 
It is important to note that the standard error δx is much smaller than the uncertainty from a single 

measurement due to the 1
√n

 factor. 

In practice, even if you only have one set of n measurements, you can still use the standard error formula 
to calculate the uncertainty. Therefore, the measurement result is presented as: 

x = x ±
σ
√n

 
 

Example: 
Consider a situation where we measure the mass of a sample 30 times, and the measured mass values 
are listed in Table 1. These values are continuous with three significant figures, as provided by an 
electronic balance. The uncertainty of each mass value is not specified at this point. We can use the 
Gaussian approach to estimate the true value and the uncertainty for the entire set of measurements. 

The measured mass values are represented in a 
histogram (Figure 10), showing the frequency of values 
in different ranges. Since the error sources are primarily 
random (due to scale uncertainty, placement of the 
sample on the balance, etc.), the distribution follows a 
Gaussian pattern. 
 

For the 30 measurements, the mean mass is: 

 mmean =
1

30
�mi

30

i=1

= 1.10 kg 

From the histogram, it is evident that the data is centered 
around this mean mass value of 1.10 kg. The standard 
deviation is calculated as: 

 σm = �
1

30 − 1
�(mi − mmean)2
30

i=1

= 0.05 kg 

The standard error of the measurements is: 

δm =
σm
√30

=
0.05
√30

= 0.01 kg 

Thus, the measured result is presented as: 
m = (1.10 ± 0.01) kg 

This shows the mean value and its associated uncertainty, allowing for a more accurate representation 
of the measurement. 
 

 
 
Summary of Gaussian Errors 
Errors generally indicate a range around the measured value where a new measurement is likely to fall. 
The exact likelihood depends on the statistical distribution of the measurements. Typically, a single 
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measurement has about a 68% chance of being within one standard deviation of the mean. Similarly, the 
mean has roughly a 68% chance of being within one standard error of the true value. This also means 
there's a 32% chance that the true value is outside one standard error of the mean. However, this 
probability decreases significantly as the range around the mean increases. For instance, there's about a 
5% chance that the true value is more than two standard errors away from the mean, and less than a 1% 
chance that it is more than three standard errors away. 
 

This interpretation holds only if the measurements are uncorrelated and free of systematic errors. If 
instrumental or systematic errors dominate, or if measurements are taken only once or twice, calculating 
random errors is pointless. Instead, use the scale uncertainty or the best-guess systematic error. When 
deriving results from multiple measurements, it's crucial to avoid misestimating experimental errors. 
 

It's important to know when to use standard deviation versus standard error. Standard deviation shows 
the distribution of individual data points around the mean, while standard error indicates the precision 
of the mean estimate. If you're interested in the spread and variability of data from a single measurement, 
use standard deviation. For understanding the precision of the true value or comparing differences 
between means, use standard error. 
 

Key points to remember: 
Standard deviation measures how much the values in a dataset differ from each other. 
Standard error measures how accurately you know the population mean. 
Standard error decreases as sample size increases because larger samples tend to give a mean closer 
to the true population mean. 
Standard deviation does not change predictably with more data; it measures data scattering, which 
remains consistent regardless of sample size. 
 

Poisson Distribution  
Background of Poisson Distribution 
Radioactive decay is a process where unstable atoms transform into another element or isotope by 
emitting photons, electrons, or alpha particles. This decay is an example of a Poisson process, where 
events are randomly distributed in time, space, or other variables. The detection of particles emitted 
from a radioactive substance is random and statistically independent, meaning that counting particles 
over equal time intervals will likely yield different results each time. These counts are subject to statistical 
fluctuations, and if the experiment is repeated many times, the observed values will follow a distribution 
based on the number of atoms that can decay and their natural decay rates. 
 

Suppose a sample contains n radioactive nuclei with a known probability of decay p (the decay rate). 
The probability of recording k counts during a given time interval is given by the Binomial distribution: 

P(n, p, k) =
n!

k! (n − k)!
pk(1− p)n−k 

However, when the number of radioactive nuclei n is much larger than the recorded counts k, and the 
probability of decay p is small (n ≫ k  and p ≪ 1), the Poisson distribution is more suitable. The Poisson 
distribution is expressed as: 

P(μ, k) =
μke−μ

k!
, 

where μ = np. Here, μ is a constant value representing the mean number of counts and is given by the 
product of n and p. 
An example of the Poisson distribution is illustrated in Figure 11. 
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When both the number of nuclei n and the recorded 
counts k are large, the Poisson distribution 
approaches a Gaussian distribution, as shown in 
Figure 12: 

P(k) =
1

√2πσ2
e−

(k−μ)2
2σ2  

where σ2 = μ. The Gaussian distribution is used for 
continuous random variables, unlike the discrete 
variables in Poisson and Binomial distributions. This 
transition to a Gaussian distribution allows the use of 
more mathematical tools, such as integration, to 

calculate probabilities. 
 
This shift from a Poisson to a Gaussian distribution 
demonstrates how large datasets enable the 
application of continuous distribution models and 
more advanced mathematical methods. 
 
 

 
 
 
 
 

Estimation of Measured Value and Its Uncertainty 
Since any observation can yield counts ranging from zero to any positive integer (k = 0, 1, 2, 3, ...), the 
sum of all probabilities P(k, μ) for a given μ must equal one: 

� P(k, μ)
∞

k=0

= 1. 

For discrete random variables, the expected value (mean) and variance are defined as ∑  ∑ xiP(xi) andi  
∑  ∑ (xi − μ)2P(xi)i , respectively. For a Poisson distribution, the expected value (mean) μ is given by: 
μ = ∑ k∞

k=0 P(k, μ) = μ. 
The variance, which is equal to σ2, is: 

σ2 = �(k − μ)2P(k, μ)
∞

k=0

= μ. 

Thus, the standard deviation σ is: 

σ = �μ. 
Assuming most measurements are close to the mean value (i.e., k is near μ), the error of a single 

measurement can be estimated as δk = √k ≈ √μ. For example, if 100 particles are counted in 30 

seconds, the uncertainty is  √100 = 10 , so the resultis 100 ± 10 counts. 
An example: counting gamma particles produced from the background over 30 seconds for 1000 trials, 
with results shown in Table 
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Here, f is the frequency of occurrence, and k are discrete counts. The sum of all f values gives 1000 
measurements, and therefore: 

P(k) =
f

1000
, 

� P(k)
∞

k=0

= 1. 

A histogram (Figure 13) shows the distribution. The 
mean value μ\muμ is calculated as: 
μ = ∑ kk P(k) = 4.997 ≈ 5 counts, close to the peak 
center. The variance is: 

σ2 = �(xi − μ)2P(xi)
i

= 5.013 ≈ 5, 

confirming σ2 = μ and that the data follows a typical 
Poisson distribution. The standard deviation is: 

δk = �μ = 2.23 ≈ 2 counts. 
Thus, the result can be presented as 5 ± 2 counts. Often, instead of 1000 measurements, a single longer 

measurement (e.g., 600 seconds) is taken, with the standard deviation given by: δk = √k. 
 

Systematic Errors 
Systematic errors are consistent inaccuracies in measurements caused by factors that have not been 
properly considered or calibrated. Unlike random errors, systematic errors cannot be reduced by 
increasing the number of observations. They are more challenging to identify and quantify. Although 
there is no standard method for calculating systematic errors, they can often be minimized or identified 
through proper experimental techniques. These errors can be mitigated by using different instruments 
to cross-check results, having another experimenter repeat the experiment, or improving experimental 
conditions. 
 

An example of considering systematic errors is the digital multimeter. According to its specifications, the 
accuracy is (0.025% + 2), where 0.025% is the percentage error relative to the measured value and 2 is 
the accuracy of the last digit. For a measurement of 2.346 V, the actual voltage is (2.346 ± 0.0006 ± 
0.002) V. The first error is the systematic error due to the instrument's gain and offset inaccuracies, while 
the second is the random error due to scale uncertainty. In precise experiments, these errors should be 
listed separately because they may contribute differently to the overall experimental errors. 
 

Systematic errors are categorized into two types: instrumentation and environmental. Instrumentation 
errors can usually be reduced by using higher quality instruments and are easier to estimate. 
Environmental errors, such as those caused by air friction or Earth's magnetic field, are harder to reduce 
or estimate and may require redesigning the experiment to mitigate their effects. Computer simulations 
are often necessary to estimate environmental impacts on experimental results and errors. 
Here are some common techniques to minimize systematic errors: 
 

Calibration: Before using any instrument, calibrate it by checking its zero point and taking 
measurements with a standard reference source. 
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Comparison with Scale Uncertainties: Compare the error from scale uncertainties with the standard 
deviation of the measured data. If the standard deviation is larger, it indicates the presence of significant 
systematic errors. 
 

Independent Experiment Comparison: Compare your results with those from another independent 
experiment. Discrepancies suggest that at least one experiment has systematic errors. 
When conducting experiments, always check the instrument's zeroing before use and compare the 
results with accepted values. Discuss any potential sources of systematic errors to ensure the accuracy 
and reliability of your measurements. 
 

Precision vs Accuracy 
In scientific experiments, we generally conduct two types. In one type, we aim to verify an existing 
theory or quantity, such as the gravitational constant. In the other, the theory or quantity is unknown, 
and our task is to confirm it through research. 
 

For the first type, we focus on accuracy vs. precision. Let's consider an example: Three groups of 
students attempt to measure the gravitational constant, which is known to be 9.81 m/s². After their 
measurements, all three groups report identical mean values but with different standard errors. We can 
summarize the results in three cases: 
 

Case 1 
g = 9.75 ± 0.09 m/s2 
The difference between the experimental result and the expected value is 0.06 m/s², with a ratio of 
difference/error = 0.06/0.09, which is less than 1. Therefore, the result is consistent with the expected 
value. 
 

Case 2 
g = 9.75 ± 0.01 m/s2 
The difference remains 0.06 m/s², but the ratio of 0.06/0.01 is much greater than 1. Despite the small 
error margin, the result is not consistent with the expected value. 
 

Case 3 
g = 9.75 ± 0.04 m/s2 
Here, the difference is still 0.06 m/s², but the ratio of 0.06/0.04 is between 1 and 4. This result is 
inconclusive, suggesting the need for further measurements. 
 

Accuracy refers to how close an experimental result is to the "true" expected value, while precision 
indicates the consistency of the results, regardless of how close they are to the true value. Thus, Case 2 
is more precise than Case 1, likely due to better equipment, though it may not be calibrated correctly. 
Conversely, Case 1 is more accurate. Ideally, results should be both accurate and precise. 
 

If the ratio of difference to error is consistently greater than 1 across various experiments, the theory or 
the experimental design may be flawed, necessitating a review of both to explain the discrepancy. 
Observing such discrepancies can lead to new laws or theories in physics. 
In the second type of experiment, where there is no reference to a true value, precision is the main 
concern. The best result sets a standard until more precise measurements are available. Accuracy is 
difficult to determine since we don't always know the expected answer, and in scientific research, we 
rarely know what the answer should be. 
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In undergraduate physics labs, students typically focus on the first type, studying proven theories or 
known quantities. Deviations from expected values suggest systematic errors in the experiments, 
prompting students to identify error sources and improve their methods. 
In contrast, research scientists often focus on the second type, where theories or quantities are not yet 
fully understood. 
 

Propagation of Errors 
Often, the physical quantity of interest y is determined as a function f of several measurable quantities 
𝑥𝑥𝑖𝑖 (where i=1,2,…,m). Each 𝑥𝑥𝑖𝑖 has a standard error 𝛿𝛿𝑥𝑥𝑖𝑖, and each contributes to the overall error in y. 
 

For instance, in a free-fall experiment, we aim to find g by measuring the distance d and time t 
independently, then using the equation 𝑔𝑔 = 2𝑑𝑑/𝑡𝑡2. Suppose 𝑑𝑑 = (1.095 ± 0.001)𝑚𝑚 and 𝑡𝑡 =
(0.472 ± 0.002)sec. The calculated g would be 𝑔𝑔 = 2 × 1.095/0.4722 = 9.83 𝑚𝑚/𝑠𝑠2 (with three 
significant figures). But what about its error? 
This section explains how to determine the standard error of a calculated result from the standard errors 
of the measurements. 
 

The Basic Formula of Error Propagation 
When the measurements 𝑥𝑥𝑖𝑖 are uncorrelated, the standard error 𝛿𝛿𝛿𝛿 can be estimated using the formula: 

 𝛿𝛿𝛿𝛿 = ���
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝛿𝛿𝑥𝑥𝑖𝑖�
2𝑚𝑚

𝑖𝑖=1

 

 

It is important to note that 𝑥𝑥𝑖𝑖 must all be uncorrelated for this equation to be valid. This typically holds 
true when measurements are taken by different apparatuses, each with independent measurement 
errors. Do not use this formula if one of the quantities is calculated from the others, as they would not 
be independent or uncorrelated in such cases. 
 

Some Useful Corollaries 
From the basic formula for error propagation, we can derive the results for common functional 
relationships. 
Addition: When quantities are added: 

𝛿𝛿 = 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + ⋯ 
The standard error is: 

𝛿𝛿 𝛿𝛿  =  �𝛿𝛿 𝑥𝑥12  +  𝛿𝛿 𝑥𝑥22  +  𝛿𝛿 𝑥𝑥32  +  …    
 

Subtraction: When quantities are subtracted: 
𝛿𝛿 = 𝑥𝑥1 − 𝑥𝑥2 
The standard error is: 

𝛿𝛿𝛿𝛿 = �𝛿𝛿𝑥𝑥12 + 𝛿𝛿𝑥𝑥22  
 

Multiplication: When quantities are multiplied: 
𝛿𝛿 = 𝑥𝑥1𝑥𝑥2𝑥𝑥3 … 

The standard error is: 

 
𝛿𝛿𝛿𝛿
𝛿𝛿

= ��
𝛿𝛿𝑥𝑥1
𝑥𝑥1
�
2

+ �
𝛿𝛿𝑥𝑥2
𝑥𝑥2

�
2

+ �
𝛿𝛿𝑥𝑥3
𝑥𝑥3

�
2

+ ⋯  

Division: When quantities are divided:  𝛿𝛿 = 𝑥𝑥1
𝑥𝑥2
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The standard error is: 

𝛿𝛿𝛿𝛿
𝛿𝛿

= ��
𝛿𝛿𝑥𝑥1
𝑥𝑥1
�
2

+ �
𝛿𝛿𝑥𝑥2
𝑥𝑥2

�
2

 

With a constant: When there is a linear combination of variables with constants 𝑐𝑐1, 𝑐𝑐2, … : 
𝛿𝛿 = 𝑐𝑐1𝑥𝑥1 + 𝑐𝑐2𝑥𝑥2 + ⋯ 

The standard error is: 

 𝛿𝛿𝛿𝛿 = �𝑐𝑐12𝛿𝛿𝑥𝑥12 + 𝑐𝑐22𝛿𝛿𝑥𝑥22 + ⋯ 

Power dependence: When quantities have a power dependence: 
𝛿𝛿 = 𝑥𝑥1

𝑐𝑐1𝑥𝑥2
𝑐𝑐2 … 

The standard error is: 

 
𝛿𝛿𝛿𝛿
𝛿𝛿

= ��𝑐𝑐1
𝛿𝛿𝑥𝑥1
𝑥𝑥1
�
2

+ �𝑐𝑐2
𝛿𝛿𝑥𝑥2
𝑥𝑥2

�
2

+ ⋯ 

By applying these rules of error propagation to the earlier g measurement example, the final result 
becomes: 

𝑔𝑔 = 9.83 ± 0.08 m/s2 
 

Graphical Analysis 
In modern physics experiments, most calculations and data analysis are done using computers. 
However, visualizing the relationships between measurements through simple plots remains a valuable 
tool. Often, mistakes can be quickly identified by inspecting graphs early in the experimental process, 
allowing adjustments to be made before too much time is spent. Therefore, understanding basic graphing 
techniques and methods for extracting information from graphs is important. After that, we will discuss 
the principle of using computers for curve fitting to determine important parameters. 
 

Conversion to Linear Graphs 
Many experiments aim to verify existing theories, for which physical equations are already known. The 
way we plot the data can simplify the data analysis process. For instance, in a free-fall experiment, to 
determine the gravitational acceleration g using the equation: 

𝑑𝑑 =
1
2
𝑔𝑔𝑡𝑡2 

where t is the time it takes for the ball to travel a distance d is the independent variable, and t is the 
dependent variable. Instead of plotting t against d to extract g, it’s easier to plot 𝑡𝑡2against d. This 
approach makes it possible to determine g from the slope of the linear plot without needing to fit a curve. 
More importantly, such a linear plot allows for the immediate identification of any discrepancies before 
further data analysis. 

Another example is the resistance 
measurement of a semiconductor at different 
temperatures T. The resistance follows an 
exponential relationship given by: 

𝑅𝑅 = 𝐴𝐴𝑒𝑒𝑏𝑏𝑏𝑏 
where A and b are constants. To determine 
these parameters, it’s easier to plot 𝑙𝑙𝑙𝑙 𝑅𝑅 against 
1/𝑇𝑇. This will yield a straight line, as shown in 

Figure 14, from which A and b can be directly extracted from the y-intercept and the slope. 
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Data Fitting 
In physics experiments, it is common to measure a set of n data points(𝑥𝑥𝑖𝑖,𝛿𝛿𝑖𝑖), where 𝑥𝑥𝑖𝑖 is the 
independent variable and 𝛿𝛿𝑖𝑖is the dependent variable. The goal is to fit these data points with a smooth 
function  𝛿𝛿 = 𝜕𝜕(𝑥𝑥;𝑎𝑎, 𝑏𝑏, 𝑐𝑐), where a, b, and c are the constant parameters to be determined. The function 
could represent a linear straight line (the simplest case), a higher-order polynomial, or a more 
complicated form based on theoretical background. 
 

The fitting process allows us to compare experimental data with theoretical predictions and determine 
the best values for the parameters a, b, and c. For instance, in Figure 15, the black dots represent 
experimental data points, and the red solid line is the best-fitting curve. 
 

Since curve fitting often involves complex and time-consuming calculations, it is generally not done 
manually. Many software tools, such as Microsoft Excel, Origin Lab, and MATLAB, offer built-in 
functions to perform curve fitting. In PHYS1712 lectures, you will be introduced to using Excel's 
Trendline and Solver for this purpose. 
 

Before applying these tools, it's useful to 
understand the basic principles of curve 
fitting. Two common methods for fitting data 
are least squares and chi-square fitting. 
The choice between these methods depends 
on whether the uncertainty in the data is 
considered. 
 

Least-Squares Fitting 
Basics of Least-Squares Fitting 
The definition of the "best" fit is not always straightforward, and sometimes different sets of parameters 
(a, b, c, ...) can produce curves that appear very close to the data points. Therefore, a criterion is needed 
to ensure that the data points and the fitting function are as close as possible. The most commonly used 
method, which is nearly always adopted, is least squares fitting. In this method, we minimize the sum 
of the squares of the differences between the observed y-values (𝛿𝛿𝑖𝑖) and the function 𝛿𝛿 = 𝜕𝜕(𝑥𝑥) evaluated 
at 𝑥𝑥𝑖𝑖. 
 

Assume we try to fit a function 𝛿𝛿 = 𝜕𝜕(𝑥𝑥;𝑎𝑎, 𝑏𝑏, 𝑐𝑐)to n experimentally determined points 
 (𝑥𝑥1,𝛿𝛿1), (𝑥𝑥2,𝛿𝛿2), … , (𝑥𝑥𝑛𝑛,𝛿𝛿𝑛𝑛). The goal is to determine the physical parameters a, b, c, etc., for the best 
fit. To do this, we make the following assumptions: 
•  𝑥𝑥𝑖𝑖(𝜕𝜕𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … ,𝑙𝑙) are the pre-selected values of the independent variable x and are measured 

accurately with negligible errors. In other words, there are no uncertainties in x. 
•  The deviations of 𝛿𝛿𝑖𝑖(𝜕𝜕𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … ,𝑙𝑙) from the best curve follow a normal distribution. 
•  All 𝛿𝛿𝑖𝑖 's are measured with approximately the same level of accuracy. 
 

Under these assumptions, the most likely curve satisfies the least-squares criterion. That is, the 
parameters a, b, c, ... should be chosen to minimize the mean-square deviation S of the 𝛿𝛿𝑖𝑖 's from the 
curve: 

 𝑆𝑆(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) =
1
𝑙𝑙
�[𝛿𝛿𝑖𝑖 − 𝜕𝜕(𝑥𝑥𝑖𝑖;𝑎𝑎, 𝑏𝑏, 𝑐𝑐)]2
𝑛𝑛

𝑖𝑖=1

 

To minimize this sum, we set the partial derivatives of S with respect to each parameter equal to zero: 
𝜕𝜕𝑆𝑆
𝜕𝜕𝑎𝑎

=
𝜕𝜕𝑆𝑆
𝜕𝜕𝑏𝑏

=
𝜕𝜕𝑆𝑆
𝜕𝜕𝑐𝑐

= 0 
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In most cases, except for very pathological situations, the least-squares criterion is sufficient to determine 
the parameters a, b, c, ... . 

It’s important to note that Equation  minimizes the 
difference in the y-direction only, without accounting 
for any potential errors in the x-direction. This is 
shown in Figure 16(a), where the data points are 
represented by dots, and the dashed line is the fitting 
function. On the other hand, the minimization can 
also be done in the direction perpendicular to the 
fitting function, as shown in Figure 16(b), which 

involves calculating differences in both the x- and y-directions. 
 

Types of Fitting Functions 
The fitting function y=f(x) can take various forms depending on its theoretical background. Common 
types include: 

•  Linear equation: y=a+bx , where a is the y-intercept and b is the slope. 
•  Polynomial equation: For example, an mth order polynomial 𝛿𝛿 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + ⋯+

𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚 ,𝑤𝑤ℎ𝑒𝑒𝑓𝑓𝑒𝑒 𝑎𝑎0,𝑎𝑎1, … ,𝑎𝑎𝑚𝑚are constants. 
•  Exponential and logarithmic forms: Such as 𝛿𝛿 = 𝑎𝑎𝑒𝑒𝑏𝑏𝑥𝑥,𝛿𝛿 = 𝑎𝑎 𝑙𝑙𝑙𝑙(𝑥𝑥), or other non-linear forms. 

 

Linear models are relatively simple because the constant parameters are always unique, making them 
easy to solve directly. However, for nonlinear models, the resulting equations are often nonlinear as well, 
meaning they may have multiple solutions or no solutions at all. This can make solving for the parameters 
less straightforward. In such cases, as discussed in it's often advantageous to transform the nonlinear 
model into a linear one by changing the variables before fitting. Even if such a transformation is not 
possible, modern mathematical software is powerful enough to handle nonlinear curve fitting. 
 

Least-Squares Fit for a Straight Line 
In this section, we apply the least-squares fitting criterion to fit a straight line to a set of data points. The 
goal is to find the y-intercept a and the slope b of the line, which is described by the equation: 

𝒚𝒚 = 𝒂𝒂 + 𝒃𝒃𝒃𝒃 
Given 6 data points  (𝑥𝑥𝑖𝑖,𝛿𝛿𝑖𝑖) for 𝑖𝑖 =  1, 2, … , 6, we 
want to determine the values of a and b that 
minimize the sum of the squared differences 
between the observed 𝛿𝛿𝑖𝑖 values and the 
corresponding y values predicted by the line. 
 

Step-by-Step Derivation 
Define the Sum of Squared Differences (S) 

The sum of squared differences between the observed and predicted y-values is: 

 𝑆𝑆 = ��𝛿𝛿𝑖𝑖 − (𝑎𝑎 + 𝑏𝑏𝑥𝑥𝑖𝑖)�
2

  
𝑛𝑛

𝑖𝑖=1

 

For  n=6, we minimize this sum with respect to a and b. 
 

Minimization with Respect to a 
To minimize S, we take the partial derivative of S with respect to a and set it equal to zero: 

 
𝜕𝜕𝑆𝑆
𝜕𝜕𝑎𝑎

= 0 
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This leads to: 

�(𝛿𝛿𝑖𝑖 − 𝑎𝑎 − 𝑏𝑏𝑥𝑥𝑖𝑖)
6

𝑖𝑖=1

 

Simplifying: 

�𝛿𝛿𝑖𝑖

6

𝑖𝑖=1

= 6𝑎𝑎 + 𝑏𝑏�𝑥𝑥𝑖𝑖

6

𝑖𝑖=1

 

Which gives the equation: 

 𝑙𝑙𝑎𝑎 + 𝑏𝑏�𝑥𝑥𝑖𝑖

6

𝑖𝑖=1

= �𝛿𝛿𝑖𝑖

6

𝑖𝑖=1

  

This simplifies to: 
𝑙𝑙𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑌𝑌  

where: 
•   𝑏𝑏 = ∑ 𝑥𝑥𝑖𝑖6

𝑖𝑖=1  ;  𝑌𝑌 = ∑ 𝛿𝛿𝑖𝑖6
𝑖𝑖=1  

 

Minimization with Respect to b 
Next, we take the partial derivative of S with respect to b and set it equal to zero: 

𝜕𝜕𝑆𝑆
𝜕𝜕𝑏𝑏

= 0 

This leads to: 

�𝑥𝑥𝑖𝑖(𝛿𝛿𝑖𝑖 − 𝑎𝑎 − 𝑏𝑏𝑥𝑥𝑖𝑖)
6

𝑖𝑖=1

= 0 

Simplifying: 

 �𝑥𝑥𝑖𝑖𝛿𝛿𝑖𝑖

6

𝑖𝑖=1

= 𝑎𝑎�𝑥𝑥𝑖𝑖

6

𝑖𝑖=1

+ 𝑏𝑏�𝑥𝑥𝑖𝑖2
6

𝑖𝑖=1

 

This gives the equation: 
𝑎𝑎𝑏𝑏 + 𝑏𝑏𝑏𝑏 = 𝑍𝑍 

where: 
•   𝑏𝑏 = ∑ 𝑥𝑥𝑖𝑖26

𝑖𝑖=1  ;  𝑍𝑍 = ∑ 𝑥𝑥𝑖𝑖𝛿𝛿𝑖𝑖6
𝑖𝑖=1  

 

Solving the System of Equations 
The system of equations we now have is: 

𝑙𝑙𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑌𝑌𝑎𝑎𝑏𝑏 + 𝑏𝑏𝑏𝑏 = 𝑍𝑍  
This is a system of two linear equations in the unknowns a and b. The solution can be found by solving 
this system, which gives: 

 𝑎𝑎 =
𝑏𝑏𝑌𝑌 − 𝑏𝑏𝑍𝑍
𝑙𝑙𝑏𝑏 − 𝑏𝑏2

 and 𝑏𝑏 =
𝑙𝑙𝑍𝑍 − 𝑏𝑏𝑌𝑌
𝑙𝑙𝑏𝑏 − 𝑏𝑏2

 

These equations can be used to find the best-fit parameters a and b. 
 

Special Cases 
Straight Line Through the Origin: If we assume the line passes through the origin (i.e., a=0), the 
equation simplifies to: 

𝛿𝛿 =  𝑏𝑏𝑥𝑥 
In this case, the slope is given by: 

𝑏𝑏 =
𝑌𝑌
𝑏𝑏
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Zero Slope: If the slope b = 0, this means the best-fit line is a horizontal line. In this case, the y-intercept 
a is simply the mean of the 𝛿𝛿𝑖𝑖values: 

𝑎𝑎 = 𝑌𝑌
𝑛𝑛
 

 

Check for Consistency 
After solving for a and b, we can verify the correctness of the solution by checking if the sum of the 
residuals (the differences between the observed 𝛿𝛿𝑖𝑖 values and the predicted values 𝑎𝑎 + 𝑏𝑏𝑥𝑥𝑖𝑖) is zero. This 
check is given by the condition: 

�(𝛿𝛿𝑖𝑖 − 𝑎𝑎 − 𝑏𝑏𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= 0 

This provides a simple validation of the computations. 
 

Errors in Least-Squares Fit 
In least-squares fitting, it's crucial to understand how errors propagate when determining the parameters 
a (y-intercept) and b (slope) of the best-fit line. The errors in b and a are related to the uncertainty in the 
observed data points 𝛿𝛿𝑖𝑖. 
 

Error Propagation for the Slope b 
The error in the slope b, denoted as 𝛿𝛿𝑏𝑏, can be derived using the propagation of error. The formula is: 

𝛿𝛿𝑏𝑏 = ��
𝜕𝜕𝑏𝑏
𝜕𝜕𝛿𝛿𝑖𝑖

𝛿𝛿𝛿𝛿𝑖𝑖�
2

 

Given the least-squares solution for b (Equation), we have: 

𝛿𝛿𝑏𝑏 =
�∑ (𝛿𝛿𝑖𝑖 − 𝛿𝛿𝚤𝚤�)2𝑛𝑛

𝑖𝑖=1

√𝑙𝑙𝑏𝑏 − 𝑏𝑏2
 

Where: 
•  𝛿𝛿𝚤𝚤� = 𝑎𝑎 + 𝑏𝑏𝑥𝑥𝑖𝑖 is the predicted value of 𝛿𝛿𝑖𝑖for each 𝑥𝑥𝑖𝑖. 
•  𝑏𝑏 = ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛

𝑖𝑖=1  
•  𝑏𝑏 = ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1  
 

Thus, the standard deviation in b, denoted as δb, depends on the spread of the data points (their 
deviation from the best-fit line) and the values of X and U. 
The equation for the error in b can also be simplified as: 

𝛿𝛿𝑏𝑏 =
√𝑙𝑙 𝛿𝛿𝛿𝛿

√𝑙𝑙𝑏𝑏 − 𝑏𝑏2
 

Where δy is the standard deviation of 𝛿𝛿𝑖𝑖 values from the best-fit line. 
 

Error Propagation for the Intercept a 
Similarly, the error in the intercept a, denoted as δa, can be expressed as: 

 𝛿𝛿𝑎𝑎 =
�𝑏𝑏 𝛿𝛿𝛿𝛿2

√𝑙𝑙𝑏𝑏 − 𝑏𝑏2
 

This expression indicates that the error in a depends on the spread of the data points as well as the 
values of X and U. 
 

Standard Deviation of 𝒚𝒚𝒊𝒊 
The standard deviation of the 𝛿𝛿𝑖𝑖 values from the best-fit line can be calculated as: 
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𝛿𝛿𝛿𝛿 = �
1

𝑙𝑙 − 2
�(𝛿𝛿𝑖𝑖 − 𝑎𝑎 − 𝑏𝑏𝑥𝑥𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

This reflects how much the individual data points deviate from the fitted line. The factor 𝑙𝑙 − 2 in the 
denominator accounts for the degrees of freedom, as two parameters (a and b) have been fitted. 
 

PRACTICE QUESTIONS 
1. Which of the following is the equation for a 
Gaussian distribution? 

a) 𝜕𝜕(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋

𝑒𝑒𝑥𝑥𝑒𝑒 �− (𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2
� 

b) 𝜕𝜕(𝑥𝑥) = 1
√2𝜋𝜋

𝑒𝑒𝑥𝑥𝑒𝑒 �− (𝑥𝑥−𝜇𝜇)2

2𝜎𝜎
� 

c) 𝜕𝜕(𝑥𝑥) = 1
√2𝜋𝜋𝜎𝜎

𝑒𝑒𝑥𝑥𝑒𝑒 �− (𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2
� 

d)𝜕𝜕(𝑥𝑥) = 1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒𝑥𝑥𝑒𝑒 �− (𝑥𝑥−𝜇𝜇)
2𝜎𝜎2

� 
 

2. In a Gaussian distribution, what percentage of 
the data falls within one standard deviation 
from the mean? 
a) 68%  b) 95%  c) 99.7% d) 50% 
 

3. The central limit theorem states that the sum 
of a large number of small, independent random 
errors will form a: 
a) Uniform distribution  b) Binomial distribution 
c) Gaussian distribution d) Poisson distribution 
 

4. If the error in a measurement is normally 
distributed with a mean of 0 and a standard 
deviation of σ, what is the probability that the 
error lies with in 𝝈𝝈 ± 𝝈𝝈? 
a) 50%  b) 68%  c) 95%  d) 99% 
 

5. The Poisson distribution is most appropriate 
for modeling: 
a) The distribution of heights in a population 
b) The number of defects in a manufactured item 
c) The time between arrivals of customers at a store 
d) The number of photons detected by a 
photomultiplier tube 
 

6. In a Poisson distribution, if the average 
number of occurrences is λ, what is the variance 
of the distribution? 

a) √𝜆𝜆   b) 𝜆𝜆2  c) 𝜆𝜆  d) 1
𝜆𝜆

 
 

7. Which type of graph is most suitable for 
visualizing the distribution of a dataset? 

a) Scatter plot   b) Histogram  
c) Line graph   d) Bar chart 
 

8. In a linear regression analysis, the slope of the 
best-fit line represents: 
a) The correlation between the variables 
b) The intercept on the y-axis 
c) The rate of change of the dependent variable with 
respect to the independent variable 
d) The variance of the data 
 

9. Which of the following represents the formula 
for the uncertainty in the mean value of a set of 
measurements? 

a) 𝜎𝜎�̅�𝑥 = 𝜎𝜎
√𝑛𝑛

   b) 𝜎𝜎�̅�𝑥 = 𝜎𝜎2

𝑛𝑛
  

c) 𝜎𝜎�̅�𝑥 = �𝜎𝜎
𝑛𝑛

   d) 𝜎𝜎�̅�𝑥 = 𝜎𝜎
𝑛𝑛
 

 

10. If 𝒛𝒛 =  𝒃𝒃 ⋅ 𝒚𝒚, and the errors in x and y are 𝝈𝝈𝒃𝒃 
and 𝝈𝝈𝒚𝒚 respectively, the propagated error 𝝈𝝈𝒛𝒛 is 
given by: 

a)  𝜎𝜎𝑧𝑧 = ��𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥
𝜎𝜎𝑥𝑥�

2
+ �𝜕𝜕𝑧𝑧

𝜕𝜕𝜕𝜕
𝜎𝜎𝜕𝜕�

2
 

b)  𝜎𝜎𝑧𝑧 = ��𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥
�
2
𝜎𝜎𝑥𝑥2 + �𝜕𝜕𝑧𝑧

𝜕𝜕𝜕𝜕
�
2
𝜎𝜎𝜕𝜕2 

c)  𝜎𝜎𝑧𝑧 = ��𝜕𝜕𝑧𝑧𝜕𝜕𝑥𝑥 𝜎𝜎𝑥𝑥�+ �𝜕𝜕𝑧𝑧
𝜕𝜕𝜕𝜕
𝜎𝜎𝜕𝜕�  

d)  𝜎𝜎𝑧𝑧 = �𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥
𝜎𝜎𝑥𝑥� + �𝜕𝜕𝑧𝑧

𝜕𝜕𝜕𝜕
𝜎𝜎𝜕𝜕� 

 

11. The standard deviation of a dataset 
measures: 
a) The average value of the dataset 
b) The spread or dispersion of the dataset 
c) The sum of the squared deviations from the mean 
d) The correlation between two variables 
 

12. Given the dataset {2, 4, 4, 4, 5, 5, 7, 9}, what 
is the standard deviation? 
a) 2    b) 3  c) 4  d) 5 

 
 
 
 

Ans: 1-a,2-a,3-c,4-b,5-d,6-c,7-b,8-c,9-a,10-b,11-b,12-a. 
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